60 lines
1.4 KiB
Plaintext
60 lines
1.4 KiB
Plaintext
|
import Nevanlinna.analyticAt
|
|||
|
import Nevanlinna.divisor
|
|||
|
|
|||
|
open scoped Interval Topology
|
|||
|
open Real Filter MeasureTheory intervalIntegral
|
|||
|
|
|||
|
|
|||
|
noncomputable def AnalyticOnNhd.zeroDivisor
|
|||
|
{f : ℂ → ℂ}
|
|||
|
{U : Set ℂ}
|
|||
|
(hf : AnalyticOnNhd ℂ f U) :
|
|||
|
Divisor U where
|
|||
|
|
|||
|
toFun := by
|
|||
|
intro z
|
|||
|
if hz : z ∈ U then
|
|||
|
exact ((hf z hz).order.toNat : ℤ)
|
|||
|
else
|
|||
|
exact 0
|
|||
|
|
|||
|
supportInU := by
|
|||
|
intro z hz
|
|||
|
simp at hz
|
|||
|
by_contra h₂z
|
|||
|
simp [h₂z] at hz
|
|||
|
|
|||
|
locallyFiniteInU := by
|
|||
|
intro z hz
|
|||
|
|
|||
|
apply eventually_nhdsWithin_iff.2
|
|||
|
rw [eventually_nhds_iff]
|
|||
|
|
|||
|
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
|
|||
|
· rw [eventually_nhds_iff] at h
|
|||
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
|||
|
use N
|
|||
|
constructor
|
|||
|
· intro y h₁y _
|
|||
|
by_cases h₃y : y ∈ U
|
|||
|
· simp [h₃y]
|
|||
|
right
|
|||
|
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
|
|||
|
rw [eventually_nhds_iff]
|
|||
|
use N
|
|||
|
· simp [h₃y]
|
|||
|
· tauto
|
|||
|
|
|||
|
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
|
|||
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
|
|||
|
use N
|
|||
|
constructor
|
|||
|
· intro y h₁y h₂y
|
|||
|
by_cases h₃y : y ∈ U
|
|||
|
· simp [h₃y]
|
|||
|
left
|
|||
|
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
|
|||
|
exact h₁N y h₁y h₂y
|
|||
|
· simp [h₃y]
|
|||
|
· tauto
|