Compare commits

..

No commits in common. "main" and "feature/analyticOn" have entirely different histories.

23 changed files with 87 additions and 1887 deletions

View File

@ -2,20 +2,6 @@ import Mathlib.Analysis.Analytic.IsolatedZeros
import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Analytic.Linear
open Topology
theorem AnalyticAt.order_neq_top_iff
{f : }
{z₀ : }
(hf : AnalyticAt f z₀) :
hf.order ≠ ↔ ∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ (hf.order.toNat) • g z := by
rw [← hf.order_eq_nat_iff]
constructor
· intro h₁f
exact Eq.symm (ENat.coe_toNat h₁f)
· intro h₁f
exact ENat.coe_toNat_eq_self.mp (id (Eq.symm h₁f))
theorem AnalyticAt.order_mul
@ -119,6 +105,10 @@ theorem AnalyticAt.supp_order_toNat
simp [hf.order_eq_zero_iff.2 h₁f]
theorem ContinuousLinearEquiv.analyticAt
( : ≃L[] ) (z₀ : ) : AnalyticAt (⇑ℓ) z₀ := .toContinuousLinearMap.analyticAt z₀
theorem eventually_nhds_comp_composition
{f₁ f₂ : }
{z₀ : }
@ -234,111 +224,3 @@ theorem AnalyticAt.order_comp_CLE
rw [this]
simp
theorem AnalyticAt.localIdentity
{f g : }
{z₀ : }
(hf : AnalyticAt f z₀)
(hg : AnalyticAt g z₀) :
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
intro h
let Δ := f - g
have : AnalyticAt Δ z₀ := AnalyticAt.sub hf hg
have t₁ : Δ =ᶠ[𝓝[≠] z₀] 0 := by
exact Filter.eventuallyEq_iff_sub.mp h
have : Δ =ᶠ[𝓝 z₀] 0 := by
rcases (AnalyticAt.eventually_eq_zero_or_eventually_ne_zero this) with h | h
· exact h
· have := Filter.EventuallyEq.eventually t₁
let A := Filter.eventually_and.2 ⟨this, h⟩
let _ := Filter.Eventually.exists A
tauto
exact Filter.eventuallyEq_iff_sub.mpr this
theorem AnalyticAt.mul₁
{f g : }
{z : }
(hf : AnalyticAt f z)
(hg : AnalyticAt g z) :
AnalyticAt (f * g) z := by
rw [(by rfl : f * g = (fun x ↦ f x * g x))]
exact mul hf hg
theorem analyticAt_finprod
{α : Type}
{f : α}
{z : }
(hf : ∀ a, AnalyticAt (f a) z) :
AnalyticAt (∏ᶠ a, f a) z := by
by_cases h₁f : (Function.mulSupport f).Finite
· rw [finprod_eq_prod f h₁f]
rw [Finset.prod_fn h₁f.toFinset f]
exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a)
· rw [finprod_of_infinite_mulSupport h₁f]
exact analyticAt_const
lemma AnalyticAt.zpow_nonneg
{f : }
{z₀ : }
{n : }
(hf : AnalyticAt f z₀)
(hn : 0 ≤ n) :
AnalyticAt (fun x ↦ (f x) ^ n) z₀ := by
simp_rw [(Eq.symm (Int.toNat_of_nonneg hn) : n = OfNat.ofNat n.toNat), zpow_ofNat]
apply AnalyticAt.pow hf
theorem AnalyticAt.zpow
{f : }
{z₀ : }
{n : }
(h₁f : AnalyticAt f z₀)
(h₂f : f z₀ ≠ 0) :
AnalyticAt (fun x ↦ (f x) ^ n) z₀ := by
by_cases hn : 0 ≤ n
· exact zpow_nonneg h₁f hn
· rw [(Int.eq_neg_comm.mp rfl : n = - (- n))]
conv =>
arg 2
intro x
rw [zpow_neg]
exact AnalyticAt.inv (zpow_nonneg h₁f (by linarith)) (zpow_ne_zero (-n) h₂f)
/- A function is analytic at a point iff it is analytic after multiplication
with a non-vanishing analytic function
-/
theorem analyticAt_of_mul_analytic
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
AnalyticAt f z₀ ↔ AnalyticAt (f * g) z₀ := by
constructor
· exact fun a => AnalyticAt.mul₁ a h₁g
· intro hprod
let g' := fun z ↦ (g z)⁻¹
have h₁g' := h₁g.inv h₂g
have h₂g' : g' z₀ ≠ 0 := by
exact inv_ne_zero h₂g
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
unfold Filter.EventuallyEq
apply Filter.eventually_iff_exists_mem.mpr
use g⁻¹' {0}ᶜ
constructor
· apply ContinuousAt.preimage_mem_nhds
exact AnalyticAt.continuousAt h₁g
exact compl_singleton_mem_nhds_iff.mpr h₂g
· intro y hy
simp at hy
simp [hy]
rw [analyticAt_congr this]
apply hprod.mul
exact h₁g'

View File

@ -1,59 +0,0 @@
import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def AnalyticOnNhd.zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.toNat : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y _
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhds_iff]
use N
· simp [h₃y]
· tauto
· rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
exact h₁N y h₁y h₂y
· simp [h₃y]
· tauto

View File

@ -4,17 +4,17 @@ import Mathlib.Analysis.Complex.Basic
import Nevanlinna.analyticAt
noncomputable def AnalyticOnNhd.order
{f : } {U : Set } (hf : AnalyticOnNhd f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
noncomputable def AnalyticOn.order
{f : } {U : Set } (hf : AnalyticOn f U) : U → ℕ∞ := fun u ↦ (hf u u.2).order
theorem AnalyticOnNhd.order_eq_nat_iff
theorem AnalyticOn.order_eq_nat_iff
{f : }
{U : Set }
{z₀ : U}
(hf : AnalyticOnNhd f U)
(hf : AnalyticOn f U)
(n : ) :
hf.order z₀ = ↑n ↔ ∃ (g : ), AnalyticOnNhd g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
hf.order z₀ = ↑n ↔ ∃ (g : ), AnalyticOn g U ∧ g z₀ ≠ 0 ∧ ∀ z, f z = (z - z₀) ^ n • g z := by
constructor
-- Direction →
@ -91,31 +91,31 @@ theorem AnalyticOnNhd.order_eq_nat_iff
-- direction ←
intro h
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
dsimp [AnalyticOnNhd.order]
dsimp [AnalyticOn.order]
rw [AnalyticAt.order_eq_nat_iff]
use g
exact ⟨h₁g z₀ z₀.2, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
theorem AnalyticOnNhd.support_of_order₁
theorem AnalyticOn.support_of_order₁
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
(hf : AnalyticOn f U) :
Function.support hf.order = U.restrict f⁻¹' {0} := by
ext u
simp [AnalyticOnNhd.order]
simp [AnalyticOn.order]
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
theorem AnalyticOnNhd.eliminateZeros
theorem AnalyticOn.eliminateZeros
{f : }
{U : Set }
{A : Finset U}
(hf : AnalyticOnNhd f U)
(hf : AnalyticOn f U)
(n : U → ) :
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ), AnalyticOnNhd g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
(∀ a ∈ A, hf.order a = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z := by
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOnNhd g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ), AnalyticOn g U ∧ (∀ a ∈ A, g a ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (n a)) • g z)
-- case empty
simp
@ -146,7 +146,7 @@ theorem AnalyticOnNhd.eliminateZeros
intro b _
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_id
exact analyticAt_const
have h₂φ : h₁φ.order = (0 : ) := by
@ -173,7 +173,7 @@ theorem AnalyticOnNhd.eliminateZeros
rw [h₂φ]
simp
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOnNhd.order_eq_nat_iff h₁g₀ (n b₀)).1 this
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticOn.order_eq_nat_iff h₁g₀ (n b₀)).1 this
use g₁
constructor
@ -203,7 +203,7 @@ theorem XX
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∀ (hu : u ∈ U), (h₁f u hu).order.toNat = (h₁f u hu).order := by
@ -221,7 +221,7 @@ theorem discreteZeros
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
DiscreteTopology ((U.restrict f)⁻¹' {0}) := by
@ -293,7 +293,7 @@ theorem finiteZeros
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
Set.Finite (U.restrict f⁻¹' {0}) := by
@ -310,14 +310,14 @@ theorem finiteZeros
exact discreteZeros h₁U h₁f h₂f
theorem AnalyticOnNhdCompact.eliminateZeros
theorem AnalyticOnCompact.eliminateZeros
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ) (A : Finset U), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
∃ (g : ) (A : Finset U), AnalyticOn g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
@ -325,13 +325,13 @@ theorem AnalyticOnNhdCompact.eliminateZeros
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
dsimp [n, AnalyticOn.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
use g
use A
@ -357,14 +357,14 @@ theorem AnalyticOnNhdCompact.eliminateZeros
· exact inter
theorem AnalyticOnNhdCompact.eliminateZeros₂
theorem AnalyticOnCompact.eliminateZeros₂
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
∃ (g : ), AnalyticOn g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ (finiteZeros h₁U h₂U h₁f h₂f).toFinset, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
@ -372,12 +372,12 @@ theorem AnalyticOnNhdCompact.eliminateZeros₂
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
dsimp [n, AnalyticOn.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
use g
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by
@ -402,14 +402,14 @@ theorem AnalyticOnNhdCompact.eliminateZeros₂
· exact h₃g
theorem AnalyticOnNhdCompact.eliminateZeros₁
theorem AnalyticOnCompact.eliminateZeros₁
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
∃ (g : ), AnalyticOnNhd g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
∃ (g : ), AnalyticOn g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ᶠ a, (z - a) ^ (h₁f.order a).toNat) • g z := by
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
@ -417,12 +417,12 @@ theorem AnalyticOnNhdCompact.eliminateZeros₁
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n, AnalyticOnNhd.order]
dsimp [n, AnalyticOn.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOnNhd.eliminateZeros (A := A) h₁f n hn
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
use g
have inter : ∀ (z : ), f z = (∏ a ∈ A, (z - ↑a) ^ (h₁f (↑a) a.property).order.toNat) • g z := by

View File

@ -28,7 +28,7 @@ orthonormal basis `v` as `∑ i, (v i) ⊗ₜ[] (v i)`.
-/
open InnerProductSpace
open TensorProduct
@ -41,11 +41,12 @@ noncomputable def InnerProductSpace.canonicalCovariantTensor
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
: E ⊗[] E := ∑ i, ((stdOrthonormalBasis E) i) ⊗ₜ[] ((stdOrthonormalBasis E) i)
theorem InnerProductSpace.canonicalCovariantTensorRepresentation
(E : Type*) [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E]
[Fintype ι]
(v : OrthonormalBasis ι E) :
InnerProductSpace.canonicalCovariantTensor E = ∑ i, (v i) ⊗ₜ[] (v i) := by
(v : OrthonormalBasis ι E)
: InnerProductSpace.canonicalCovariantTensor E = ∑ i, (v i) ⊗ₜ[] (v i) := by
let w := stdOrthonormalBasis E
conv =>

View File

@ -31,7 +31,7 @@ theorem CauchyRiemann₃ : (DifferentiableAt f z)
have ContinuousLinearMap.comp_lineDeriv : ∀ w : , ∀ l : →L[] , lineDeriv (l ∘ f) z w = l ((fderiv f z) w) := by
intro w l
rw [DifferentiableAt.lineDeriv_eq_fderiv]
rw [fderiv_comp]
rw [fderiv.comp]
simp
fun_prop
exact h.restrictScalars

View File

@ -1,93 +0,0 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
open Interval Topology
open Real Filter MeasureTheory intervalIntegral
structure Divisor
(U : Set )
where
toFun :
supportInU : toFun.support ⊆ U
locallyFiniteInU : ∀ x ∈ U, toFun =ᶠ[𝓝[≠] x] 0
instance
(U : Set ) :
CoeFun (Divisor U) (fun _ ↦ ) where
coe := Divisor.toFun
attribute [coe] Divisor.toFun
theorem Divisor.discreteSupport
{U : Set }
(hU : IsClosed U)
(D : Divisor U) :
DiscreteTopology D.toFun.support := by
apply discreteTopology_subtype_iff.mpr
intro x hx
apply inf_principal_eq_bot.mpr
by_cases h₁x : x ∈ U
· let A := D.locallyFiniteInU x h₁x
refine mem_nhdsWithin.mpr ?_
rw [eventuallyEq_nhdsWithin_iff] at A
obtain ⟨U, h₁U, h₂U, h₃U⟩ := eventually_nhds_iff.1 A
use U
constructor
· exact h₂U
· constructor
· exact h₃U
· intro y hy
let C := h₁U y hy.1 hy.2
tauto
· refine mem_nhdsWithin.mpr ?_
use Uᶜ
constructor
· simpa
· constructor
· tauto
· intro y _
let A := D.supportInU
simp at A
simp
exact False.elim (h₁x (A x hx))
theorem Divisor.closedSupport
{U : Set }
(hU : IsClosed U)
(D : Divisor U) :
IsClosed D.toFun.support := by
rw [← isOpen_compl_iff]
rw [isOpen_iff_eventually]
intro x hx
by_cases h₁x : x ∈ U
· have A := D.locallyFiniteInU x h₁x
simp [A]
simp at hx
let B := Mnhds A hx
simpa
· rw [eventually_iff_exists_mem]
use Uᶜ
constructor
· exact IsClosed.compl_mem_nhds hU h₁x
· intro y hy
simp
exact Function.nmem_support.mp fun a => hy (D.supportInU a)
theorem Divisor.finiteSupport
{U : Set }
(hU : IsCompact U)
(D : Divisor U) :
Set.Finite D.toFun.support := by
apply IsCompact.finite
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
exact D.supportInU
· exact D.discreteSupport hU.isClosed

View File

@ -1,19 +1,15 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.holomorphic_JensenFormula
open Real
variable (f : )
variable {h₁f : MeromorphicOn f }
variable {f : }
variable {h₁f : AnalyticOn f }
variable {h₂f : f 0 ≠ 0}
noncomputable def Nevanlinna.n : := by
noncomputable def unintegratedCounting : := by
intro r
have : MeromorphicAt f z := by
exact h₁f (sorryAx true) trivial
exact ∑ᶠ z ∈ Metric.ball (0 : ) r, (h₁f z trivial).order
let A := h₁f.mono (by tauto : Metric.closedBall (0 : ) r ⊆ )
exact ∑ᶠ z, (A.order z).toNat
noncomputable def integratedCounting : := by
intro r

View File

@ -1,6 +1,6 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.analyticOn_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine
@ -11,7 +11,7 @@ open Real
theorem jensen_case_R_eq_one
(f : )
(h₁f : AnalyticOnNhd f (Metric.closedBall 0 1))
(h₁f : AnalyticOn f (Metric.closedBall 0 1))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 1 x)‖ := by
@ -24,7 +24,7 @@ theorem jensen_case_R_eq_one
have h'₂f : ∃ u ∈ (Metric.closedBall (0 : ) 1), f u ≠ 0 := by
use 0; simp; exact h₂f
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnNhdCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
obtain ⟨F, h₁F, h₂F, h₃F⟩ := AnalyticOnCompact.eliminateZeros₂ h₁U h₂U h₁f h'₂f
have h'₁F : ∀ z ∈ Metric.closedBall (0 : ) 1, HolomorphicAt F z := by
intro z h₁z
@ -259,9 +259,9 @@ theorem jensen_case_R_eq_one
intro x ⟨h₁x, _⟩
simp
dsimp [AnalyticOnNhd.order] at h₁x
dsimp [AnalyticOn.order] at h₁x
simp only [Function.mem_support, ne_eq, Nat.cast_eq_zero, not_or] at h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOnNhd.order.proof_1 h₁f x) h₁x
exact AnalyticAt.supp_order_toNat (AnalyticOn.order.proof_1 h₁f x) h₁x
--
intro x hx
@ -297,7 +297,7 @@ theorem jensen
{R : }
(hR : 0 < R)
(f : )
(h₁f : AnalyticOnNhd f (Metric.closedBall 0 R))
(h₁f : AnalyticOn f (Metric.closedBall 0 R))
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
@ -327,8 +327,8 @@ theorem jensen
let F := f ∘
have h₁F : AnalyticOnNhd F (Metric.closedBall 0 1) := by
apply AnalyticOnNhd.comp (t := Metric.closedBall 0 R)
have h₁F : AnalyticOn F (Metric.closedBall 0 1) := by
apply AnalyticOn.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
@ -430,7 +430,7 @@ theorem jensen
left
congr 1
dsimp [AnalyticOnNhd.order]
dsimp [AnalyticOn.order]
rw [← AnalyticAt.order_comp_CLE ]
--

View File

@ -277,7 +277,7 @@ theorem harmonic_is_realOfHolomorphic
intro x hx
rw [fderivWithin_eq_fderiv, fderivWithin_eq_fderiv]
rw [fderiv_comp]
rw [fderiv.comp]
simp
apply ContinuousLinearMap.ext
intro w

View File

@ -666,7 +666,7 @@ theorem primitive_additivity'
dsimp [ε']; simp
have : |ε| = ε := by apply abs_of_pos h₁ε
rw [this]
apply (inv_mul_lt_iff zero_lt_two).mpr
apply (inv_mul_lt_iff zero_lt_two).mpr
linarith
have h₁ε' : 0 < ε' := by
apply mul_pos _ h₁ε

View File

@ -3,7 +3,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Topology.ContinuousOn
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.holomorphic
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.analyticOn_zeroSet
noncomputable def zeroDivisor
@ -134,7 +134,7 @@ theorem topOnPreconnected
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
∀ (hz : z ∈ U), (h₁f z hz).order ≠ := by
@ -143,7 +143,7 @@ theorem topOnPreconnected
obtain ⟨z', hz'⟩ := H
rw [AnalyticAt.order_eq_top_iff] at hz'
rw [← AnalyticAt.frequently_zero_iff_eventually_zero (h₁f z z')] at hz'
have A := AnalyticOnNhd.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
have A := AnalyticOn.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
tauto
@ -151,7 +151,7 @@ theorem supportZeroSet
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) :
U ∩ Function.support (zeroDivisor f) = U ∩ f⁻¹' {0} := by
@ -180,7 +180,7 @@ theorem supportZeroSet
refine Eq.symm (ENat.coe_toNat ?h.mpr.right.right.right.a)
exact topOnPreconnected hU h₁f h₂f h₁x
/-
theorem discreteZeros
{f : } :
DiscreteTopology (Function.support (zeroDivisor f)) := by
@ -254,13 +254,13 @@ theorem discreteZeros
simp [this] at F
ext
rwa [sub_eq_zero] at F
-/
theorem zeroDivisor_finiteOnCompact
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) -- not needed!
(h₂U : IsCompact U) :
Set.Finite (U ∩ Function.support (zeroDivisor f)) := by
@ -289,7 +289,7 @@ noncomputable def zeroDivisorDegree
{U : Set }
(h₁U : IsPreconnected U) -- not needed!
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
:= (zeroDivisor_finiteOnCompact h₁U h₁f h₂f h₂U).toFinset.card
@ -299,7 +299,7 @@ lemma zeroDivisorDegreeZero
{U : Set }
(h₁U : IsPreconnected U) -- not needed!
(h₂U : IsCompact U)
(h₁f : AnalyticOnNhd f U)
(h₁f : AnalyticOn f U)
(h₂f : ∃ z ∈ U, f z ≠ 0) : -- not needed!
0 = zeroDivisorDegree h₁U h₂U h₁f h₂f ↔ U ∩ (zeroDivisor f).support = ∅ := by
sorry
@ -309,9 +309,9 @@ lemma eliminatingZeros₀
{U : Set }
(h₁U : IsPreconnected U)
(h₂U : IsCompact U) :
∀ n : , ∀ f : , (h₁f : AnalyticOnNhd f U) → (h₂f : ∃ z ∈ U, f z ≠ 0) →
∀ n : , ∀ f : , (h₁f : AnalyticOn f U) → (h₂f : ∃ z ∈ U, f z ≠ 0) →
(n = zeroDivisorDegree h₁U h₂U h₁f h₂f) →
∃ F : , (AnalyticOnNhd F U) ∧ (f = F * ∏ᶠ a ∈ (U ∩ (zeroDivisor f).support), fun z ↦ (z - a) ^ (zeroDivisor f a)) := by
∃ F : , (AnalyticOn F U) ∧ (f = F * ∏ᶠ a ∈ (U ∩ (zeroDivisor f).support), fun z ↦ (z - a) ^ (zeroDivisor f a)) := by
intro n
induction' n with n ih
@ -340,7 +340,7 @@ lemma eliminatingZeros₀
let A := AnalyticOnNhd.order_eq_nat_iff h₁f hz₀.1 (zeroDivisor f z₀)
let A := AnalyticOn.order_eq_nat_iff h₁f hz₀.1 (zeroDivisor f z₀)
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport hz₀.2
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport' hz₀.2
rw [eq_comm] at B

View File

@ -1,7 +1,5 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
import Nevanlinna.analyticAt
variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
@ -35,62 +33,3 @@ theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf
open Topology Filter
lemma Mnhds
{α : Type}
{f g : α}
{z₀ : }
(h₁ : f =ᶠ[𝓝[≠] z₀] g)
(h₂ : f z₀ = g z₀) :
f =ᶠ[𝓝 z₀] g := by
apply eventually_nhds_iff.2
obtain ⟨t, h₁t, h₂t⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₁)
use t
constructor
· intro y hy
by_cases h₂y : y ∈ ({z₀}ᶜ : Set )
· exact h₁t y hy h₂y
· simp at h₂y
rwa [h₂y]
· exact h₂t
-- unclear where this should go
lemma WithTopCoe
{n : WithTop } :
WithTop.map (Nat.cast : ) n = 0 → n = 0 := by
rcases n with h|h
· intro h
contradiction
· intro h₁
simp only [WithTop.map, Option.map] at h₁
have : (h : ) = 0 := by
exact WithTop.coe_eq_zero.mp h₁
have : h = 0 := by
exact Int.ofNat_eq_zero.mp this
rw [this]
rfl
lemma rwx
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
a + b ≠ := by
simp; tauto
lemma untop_add
{a b : WithTop }
(ha : a ≠ )
(hb : b ≠ ) :
(a + b).untop (rwx ha hb) = a.untop ha + (b.untop hb) := by
rw [WithTop.untop_eq_iff]
rw [WithTop.coe_add]
rw [WithTop.coe_untop]
rw [WithTop.coe_untop]

View File

@ -1,150 +0,0 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem meromorphicAt_congr
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
theorem meromorphicAt_congr'
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
(∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N
theorem MeromorphicAt.order_congr
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(h : f₁ =ᶠ[𝓝[≠] z₀] f₂):
hf₁.order = (hf₁.congr h).order := by
by_cases hord : hf₁.order =
· rw [hord, eq_comm]
rw [hf₁.order_eq_top_iff] at hord
rw [(hf₁.congr h).order_eq_top_iff]
exact EventuallyEq.rw hord (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
· obtain ⟨n, hn : hf₁.order = n⟩ := Option.ne_none_iff_exists'.mp hord
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (hf₁.order_eq_int_iff n).1 hn
rw [hn, eq_comm, (hf₁.congr h).order_eq_int_iff]
use g
constructor
· assumption
· constructor
· assumption
· exact EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
theorem MeromorphicAt.order_mul
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(hf₂ : MeromorphicAt f₂ z₀) :
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
by_cases h₂f₁ : hf₁.order =
· simp [h₂f₁]
rw [hf₁.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₁
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
use t
constructor
· intro y h₁y h₂y
simp; left
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· by_cases h₂f₂ : hf₂.order =
· simp [h₂f₂]
rw [hf₂.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₂
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
use t
constructor
· intro y h₁y h₂y
simp; right
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· have h₃f₁ := Eq.symm (WithTop.coe_untop hf₁.order h₂f₁)
have h₃f₂ := Eq.symm (WithTop.coe_untop hf₂.order h₂f₂)
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (hf₁.order_eq_int_iff (hf₁.order.untop h₂f₁)).1 h₃f₁
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (hf₂.order_eq_int_iff (hf₂.order.untop h₂f₂)).1 h₃f₂
rw [h₃f₁, h₃f₂, ← WithTop.coe_add]
rw [MeromorphicAt.order_eq_int_iff]
use g₁ * g₂
constructor
· exact AnalyticAt.mul h₁g₁ h₁g₂
· constructor
· simp; tauto
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₁)
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₂)
rw [eventually_nhdsWithin_iff, eventually_nhds_iff]
use t₁ ∩ t₂
constructor
· intro y h₁y h₂y
simp
rw [h₁t₁ y h₁y.1 h₂y, h₁t₂ y h₁y.2 h₂y]
simp
rw [zpow_add' (by left; exact sub_ne_zero_of_ne h₂y)]
group
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂
-- might want theorem MeromorphicAt.order_zpow

View File

@ -1,131 +0,0 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicOn.open_of_order_eq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order = } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
have h₁z := hz
rw [MeromorphicAt.order_eq_top_iff] at hz
rw [eventually_nhdsWithin_iff] at hz
rw [eventually_nhds_iff] at hz
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := hz
let t : Set U := Subtype.val ⁻¹' t'
use t
constructor
· intro w hw
simp
by_cases h₁w : w = z
· rwa [h₁w]
· --
rw [MeromorphicAt.order_eq_top_iff]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
use t' \ {z.1}
constructor
· intro y h₁y h₂y
apply h₁t'
exact Set.mem_of_mem_diff h₁y
exact Set.mem_of_mem_inter_right h₁y
· constructor
· apply IsOpen.sdiff h₂t'
exact isClosed_singleton
· rw [Set.mem_diff]
constructor
· exact hw
· simp
exact Subtype.coe_ne_coe.mpr h₁w
· constructor
· exact isOpen_induced h₂t'
· exact h₃t'
theorem MeromorphicOn.open_of_order_neq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsOpen { u : U | (h₁f u.1 u.2).order ≠ } := by
apply isOpen_iff_forall_mem_open.mpr
intro z hz
simp at hz
let A := (h₁f z.1 z.2).eventually_eq_zero_or_eventually_ne_zero
rcases A with h|h
· rw [← (h₁f z.1 z.2).order_eq_top_iff] at h
tauto
· let A := (h₁f z.1 z.2).eventually_analyticAt
let B := Filter.Eventually.and h A
rw [eventually_nhdsWithin_iff] at B
rw [eventually_nhds_iff] at B
obtain ⟨t', h₁t', h₂t', h₃t'⟩ := B
let t : Set U := Subtype.val ⁻¹' t'
use t
constructor
· intro w hw
simp
by_cases h₁w : w = z
· rwa [h₁w]
· let B := h₁t' w hw
simp at B
have : (w : ) ≠ (z : ) := by exact Subtype.coe_ne_coe.mpr h₁w
let C := B this
let D := C.2.order_eq_zero_iff.2 C.1
rw [C.2.meromorphicAt_order, D]
simp
· constructor
· exact isOpen_induced h₂t'
· exact h₃t'
theorem MeromorphicOn.clopen_of_order_eq_top
{f : }
{U : Set }
(h₁f : MeromorphicOn f U) :
IsClopen { u : U | (h₁f u.1 u.2).order = } := by
constructor
· rw [← isOpen_compl_iff]
exact open_of_order_neq_top h₁f
· exact open_of_order_eq_top h₁f
theorem MeromorphicOn.order_ne_top
{U : Set }
(hU : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
have : PreconnectedSpace U := by
apply isPreconnected_iff_preconnectedSpace.mp
exact IsConnected.isPreconnected hU
rw [isClopen_iff] at A
rcases A with h|h
· intro u
have : u ∉ (∅ : Set U) := by exact fun a => a
rw [← h] at this
simp at this
tauto
· obtain ⟨u, hu⟩ := h₂f
have : u ∈ (Set.univ : Set U) := by trivial
rw [← h] at this
simp at this
rw [(h₁f u u.2).order_eq_zero_iff.2 hu] at this
tauto

View File

@ -1,144 +0,0 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
noncomputable def MeromorphicOn.divisor
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
Divisor U where
toFun := by
intro z
if hz : z ∈ U then
exact ((hf z hz).order.untop' 0 : )
else
exact 0
supportInU := by
intro z hz
simp at hz
by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
apply eventually_nhdsWithin_iff.2
rw [eventually_nhds_iff]
rcases MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhdsWithin_iff] at h
rw [eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
right
rw [MeromorphicAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
use N ∩ {z}ᶜ
constructor
· intro x h₁x _
exact h₁N x h₁x.1 h₁x.2
· constructor
· exact IsOpen.inter h₂N isOpen_compl_singleton
· exact Set.mem_inter h₁y h₂y
· simp [h₃y]
· tauto
· let A := (hf z hz).eventually_analyticAt
let B := Filter.eventually_and.2 ⟨h, A⟩
rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at B
obtain ⟨N, h₁N, h₂N, h₃N⟩ := B
use N
constructor
· intro y h₁y h₂y
by_cases h₃y : y ∈ U
· simp [h₃y]
left
rw [(h₁N y h₁y h₂y).2.meromorphicAt_order]
let D := (h₁N y h₁y h₂y).2.order_eq_zero_iff.2
let C := (h₁N y h₁y h₂y).1
let E := D C
rw [E]
simp
· simp [h₃y]
· tauto
theorem MeromorphicOn.divisor_def₁
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U) :
hf.divisor z = ((hf z hz).order.untop' 0 : ) := by
unfold MeromorphicOn.divisor
simp [hz]
theorem MeromorphicOn.divisor_def₂
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(hz : z ∈ U)
(h₂f : (hf z hz).order ≠ ) :
hf.divisor z = (hf z hz).order.untop h₂f := by
unfold MeromorphicOn.divisor
simp [hz]
rw [WithTop.untop'_eq_iff]
left
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
theorem MeromorphicOn.divisor_mul₀
{f₁ f₂ : }
{U : Set }
{z : }
(hz : z ∈ U)
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun z = h₁f₁.divisor.toFun z + h₁f₂.divisor.toFun z := by
by_cases h₁z : z ∈ U
· rw [MeromorphicOn.divisor_def₂ h₁f₁ hz h₂f₁]
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz h₂f₂]
have B : ((h₁f₁.mul h₁f₂) z hz).order ≠ := by
rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
simp; tauto
rw [MeromorphicOn.divisor_def₂ (h₁f₁.mul h₁f₂) hz B]
simp_rw [MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)]
rw [untop_add]
· unfold MeromorphicOn.divisor
simp [h₁z]
theorem MeromorphicOn.divisor_mul
{f₁ f₂ : }
{U : Set }
(h₁f₁ : MeromorphicOn f₁ U)
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ )
(h₁f₂ : MeromorphicOn f₂ U)
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ) :
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
funext z
by_cases hz : z ∈ U
· rw [MeromorphicOn.divisor_mul₀ hz h₁f₁ (h₂f₁ z hz) h₁f₂ (h₂f₂ z hz)]
simp
· simp
rw [Function.nmem_support.mp (fun a => hz (h₁f₁.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz (h₁f₂.divisor.supportInU a))]
rw [Function.nmem_support.mp (fun a => hz ((h₁f₁.mul h₁f₂).divisor.supportInU a))]
simp

View File

@ -202,14 +202,14 @@ theorem partialDeriv_compContLin
left
intro w
left
rw [fderiv_comp w (ContinuousLinearMap.differentiableAt l) (h w)]
rw [fderiv.comp w (ContinuousLinearMap.differentiableAt l) (h w)]
simp
rfl
theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x : E} (h : DifferentiableAt 𝕜 f x) : (partialDeriv 𝕜 v (l ∘ f)) x = (l ∘ partialDeriv 𝕜 v f) x:= by
unfold partialDeriv
rw [fderiv_comp x (ContinuousLinearMap.differentiableAt l) h]
rw [fderiv.comp x (ContinuousLinearMap.differentiableAt l) h]
simp

View File

@ -24,7 +24,7 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
exact zero_lt_two
apply (Set.mem_Icc.1 hx).1
simp
apply mul_le_one
apply mul_le_one
rw [div_le_one pi_pos]
exact two_le_pi
exact (Set.mem_Icc.1 hx).1

View File

@ -1,513 +0,0 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Algebra.Order.AddGroupWithTop
import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
import Nevanlinna.meromorphicAt
open Topology
/- Strongly MeromorphicAt -/
def StronglyMeromorphicAt
(f : )
(z₀ : ) :=
(∀ᶠ (z : ) in nhds z₀, f z = 0) (∃ (n : ), ∃ g : , (AnalyticAt g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ) in nhds z₀, f z = (z - z₀) ^ n • g z))
lemma stronglyMeromorphicAt_of_mul_analytic'
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
StronglyMeromorphicAt f z₀ → StronglyMeromorphicAt (f * g) z₀ := by
intro hf
--unfold StronglyMeromorphicAt at hf
rcases hf with h₁f|h₁f
· left
rw [eventually_nhds_iff] at h₁f
obtain ⟨t, ht⟩ := h₁f
rw [eventually_nhds_iff]
use t
constructor
· intro y hy
simp
left
exact ht.1 y hy
· exact ht.2
· right
obtain ⟨n, g_f, h₁g_f, h₂g_f, h₃g_f⟩ := h₁f
use n
use g * g_f
constructor
· apply AnalyticAt.mul
exact h₁g
exact h₁g_f
· constructor
· simp
exact ⟨h₂g, h₂g_f⟩
· rw [eventually_nhds_iff] at h₃g_f
obtain ⟨t, ht⟩ := h₃g_f
rw [eventually_nhds_iff]
use t
constructor
· intro y hy
simp
rw [ht.1]
simp
ring
exact hy
· exact ht.2
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicAt.meromorphicAt
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
MeromorphicAt f z₀ := by
rcases hf with h|h
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
rw [meromorphicAt_congr' h₃g]
apply MeromorphicAt.smul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
exact AnalyticAt.meromorphicAt h₁g
/- Strongly MeromorphicAt of non-negative order is analytic -/
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
let h₁f' := h₁f
rcases h₁f' with h|h
· rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
rw [analyticAt_congr h₃g]
have : h₁f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff]
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
rw [this] at h₂f
apply AnalyticAt.smul
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id -- Warning: want apply AnalyticAt.id
apply analyticAt_const -- Warning: want AnalyticAt.const
exact h₁g
/- Analytic functions are strongly meromorphic -/
theorem AnalyticAt.stronglyMeromorphicAt
{f : }
{z₀ : }
(h₁f : AnalyticAt f z₀) :
StronglyMeromorphicAt f z₀ := by
by_cases h₂f : h₁f.order =
· rw [AnalyticAt.order_eq_top_iff] at h₂f
tauto
· have : h₁f.order ≠ := h₂f
rw [← ENat.coe_toNat_eq_self] at this
rw [eq_comm, AnalyticAt.order_eq_nat_iff] at this
right
use h₁f.order.toNat
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
use g
tauto
/- Strong meromorphic depends only on germ -/
theorem stronglyMeromorphicAt_congr
{f g : }
{z₀ : }
(hfg : f =ᶠ[𝓝 z₀] g) :
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt g z₀ := by
unfold StronglyMeromorphicAt
constructor
· intro h
rcases h with h|h
· left
exact Filter.EventuallyEq.rw h (fun x => Eq (g x)) (id (Filter.EventuallyEq.symm hfg))
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
right
use n
use h
constructor
· assumption
· constructor
· assumption
· apply Filter.EventuallyEq.trans hfg.symm
assumption
· intro h
rcases h with h|h
· left
exact Filter.EventuallyEq.rw h (fun x => Eq (f x)) hfg
· obtain ⟨n, h, h₁h, h₂h, h₃h⟩ := h
right
use n
use h
constructor
· assumption
· constructor
· assumption
· apply Filter.EventuallyEq.trans hfg
assumption
/- A function is strongly meromorphic at a point iff it is strongly meromorphic
after multiplication with a non-vanishing analytic function
-/
theorem stronglyMeromorphicAt_of_mul_analytic
{f g : }
{z₀ : }
(h₁g : AnalyticAt g z₀)
(h₂g : g z₀ ≠ 0) :
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt (f * g) z₀ := by
constructor
· apply stronglyMeromorphicAt_of_mul_analytic' h₁g h₂g
· intro hprod
let g' := fun z ↦ (g z)⁻¹
have h₁g' := h₁g.inv h₂g
have h₂g' : g' z₀ ≠ 0 := by
exact inv_ne_zero h₂g
let B := stronglyMeromorphicAt_of_mul_analytic' h₁g' h₂g' (f := f * g) hprod
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
unfold Filter.EventuallyEq
apply Filter.eventually_iff_exists_mem.mpr
use g⁻¹' {0}ᶜ
constructor
· apply ContinuousAt.preimage_mem_nhds
exact AnalyticAt.continuousAt h₁g
exact compl_singleton_mem_nhds_iff.mpr h₂g
· intro y hy
simp at hy
simp [hy]
rwa [stronglyMeromorphicAt_congr this]
theorem StronglyMeromorphicAt.order_eq_zero_iff
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
hf.meromorphicAt.order = 0 ↔ f z₀ ≠ 0 := by
constructor
· intro h₁f
let A := hf.analytic (le_of_eq (id (Eq.symm h₁f)))
apply A.order_eq_zero_iff.1
let B := A.meromorphicAt_order
rw [h₁f] at B
apply WithTopCoe
rw [eq_comm]
exact B
· intro h
have hf' := hf
rcases hf with h₁|h₁
· have : f z₀ = 0 := by
apply Filter.EventuallyEq.eq_of_nhds h₁
tauto
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁
have : n = 0 := by
by_contra hContra
let A := Filter.EventuallyEq.eq_of_nhds h₃g
have : (0 : ) ^ n = 0 := by
exact zero_zpow n hContra
simp at A
simp_rw [this] at A
simp at A
tauto
rw [this] at h₃g
simp at h₃g
have : hf'.meromorphicAt.order = 0 := by
apply (hf'.meromorphicAt.order_eq_int_iff 0).2
use g
constructor
· assumption
· constructor
· assumption
· simp
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact this
theorem StronglyMeromorphicAt.localIdentity
{f g : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀)
(hg : StronglyMeromorphicAt g z₀) :
f =ᶠ[𝓝[≠] z₀] g → f =ᶠ[𝓝 z₀] g := by
intro h
have t₀ : hf.meromorphicAt.order = hg.meromorphicAt.order := by
exact hf.meromorphicAt.order_congr h
by_cases cs : hf.meromorphicAt.order = 0
· rw [cs] at t₀
have h₁f := hf.analytic (le_of_eq (id (Eq.symm cs)))
have h₁g := hg.analytic (le_of_eq t₀)
exact h₁f.localIdentity h₁g h
· apply Mnhds h
let A := cs
rw [hf.order_eq_zero_iff] at A
simp at A
let B := cs
rw [t₀] at B
rw [hg.order_eq_zero_iff] at B
simp at B
rw [A, B]
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicAt.makeStronglyMeromorphicAt
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
intro z
by_cases z = z₀
· by_cases h₁f : hf.order = (0 : )
· rw [hf.order_eq_int_iff] at h₁f
exact (Classical.choose h₁f) z₀
· exact 0
· exact f z
lemma m₁
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
∀ z ≠ z₀, f z = hf.makeStronglyMeromorphicAt z := by
intro z hz
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [hz]
lemma m₂
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
f =ᶠ[𝓝[≠] z₀] hf.makeStronglyMeromorphicAt := by
apply eventually_nhdsWithin_of_forall
exact fun x a => m₁ hf x a
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
StronglyMeromorphicAt hf.makeStronglyMeromorphicAt z₀ := by
by_cases h₂f : hf.order =
· have : hf.makeStronglyMeromorphicAt =ᶠ[𝓝 z₀] 0 := by
apply Mnhds
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact (MeromorphicAt.order_eq_top_iff hf).1 h₂f
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp [h₂f]
apply AnalyticAt.stronglyMeromorphicAt
rw [analyticAt_congr this]
apply analyticAt_const
· let n := hf.order.untop h₂f
have : hf.order = n := by
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
rw [hf.order_eq_int_iff] at this
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
right
use n
use g
constructor
· assumption
· constructor
· assumption
· apply Mnhds
· apply Filter.EventuallyEq.trans (Filter.EventuallyEq.symm (m₂ hf))
exact h₃g
· unfold MeromorphicAt.makeStronglyMeromorphicAt
simp
by_cases h₃f : hf.order = (0 : )
· let h₄f := (hf.order_eq_int_iff 0).1 h₃f
simp [h₃f]
obtain ⟨h₁G, h₂G, h₃G⟩ := Classical.choose_spec h₄f
simp at h₃G
have hn : n = 0 := Eq.symm ((fun {α} {a} {b} h => (WithTop.eq_untop_iff h).mpr) h₂f (id (Eq.symm h₃f)))
rw [hn]
rw [hn] at h₃g; simp at h₃g
simp
have : g =ᶠ[𝓝 z₀] (Classical.choose h₄f) := by
apply h₁g.localIdentity h₁G
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₃g) h₃G
rw [Filter.EventuallyEq.eq_of_nhds this]
· have : hf.order ≠ 0 := h₃f
simp [this]
left
apply zero_zpow n
dsimp [n]
rwa [WithTop.untop_eq_iff h₂f]
theorem StronglyMeromorphicAt.makeStronglyMeromorphic_id
{f : }
{z₀ : }
(hf : StronglyMeromorphicAt f z₀) :
f = hf.meromorphicAt.makeStronglyMeromorphicAt := by
funext z
by_cases hz : z = z₀
· rw [hz]
unfold MeromorphicAt.makeStronglyMeromorphicAt
simp
have h₀f := hf
rcases hf with h₁f|h₁f
· have A : f =ᶠ[𝓝[≠] z₀] 0 := by
apply Filter.EventuallyEq.filter_mono h₁f
exact nhdsWithin_le_nhds
let B := (MeromorphicAt.order_eq_top_iff h₀f.meromorphicAt).2 A
simp [B]
exact Filter.EventuallyEq.eq_of_nhds h₁f
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h₁f
rw [Filter.EventuallyEq.eq_of_nhds h₃g]
have : h₀f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff (StronglyMeromorphicAt.meromorphicAt h₀f) n]
use g
constructor
· assumption
· constructor
· assumption
· exact eventually_nhdsWithin_of_eventually_nhds h₃g
by_cases h₃f : h₀f.meromorphicAt.order = 0
· simp [h₃f]
have hn : n = (0 : ) := by
rw [h₃f] at this
exact WithTop.coe_eq_zero.mp (id (Eq.symm this))
simp_rw [hn]
simp
let t₀ : h₀f.meromorphicAt.order = (0 : ) := by
exact h₃f
let A := (h₀f.meromorphicAt.order_eq_int_iff 0).1 t₀
have : g =ᶠ[𝓝 z₀] (Classical.choose A) := by
obtain ⟨h₀, h₁, h₂⟩ := Classical.choose_spec A
apply h₁g.localIdentity h₀
rw [hn] at h₃g
simp at h₃g
simp at h₂
have h₄g : f =ᶠ[𝓝[≠] z₀] g := by
apply Filter.EventuallyEq.filter_mono h₃g
exact nhdsWithin_le_nhds
exact Filter.EventuallyEq.trans (Filter.EventuallyEq.symm h₄g) h₂
exact Filter.EventuallyEq.eq_of_nhds this
· simp [h₃f]
left
apply zero_zpow n
by_contra hn
rw [hn] at this
tauto
· exact m₁ (StronglyMeromorphicAt.meromorphicAt hf) z hz
theorem StronglyMeromorphicAt.eliminate
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : h₁f.meromorphicAt.order ≠ ) :
∃ g : , (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = (fun z ↦ (z-z₀) ^ (h₁f.meromorphicAt.order.untop h₂f)) * g) := by
let g₁ := (fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)) * f
let g₁₁ := fun z ↦ (z-z₀) ^ (-h₁f.meromorphicAt.order.untop h₂f)
have h₁g₁₁ : MeromorphicAt g₁₁ z₀ := by
apply MeromorphicAt.zpow
apply AnalyticAt.meromorphicAt
apply AnalyticAt.sub
apply analyticAt_id
exact analyticAt_const
have h₂g₁₁ : h₁g₁₁.order = - h₁f.meromorphicAt.order.untop h₂f := by
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [h₁g₁₁.order_eq_int_iff]
use 1
constructor
· exact analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
simp [g₁₁]
have h₁g₁ : MeromorphicAt g₁ z₀ := h₁g₁₁.mul h₁f.meromorphicAt
have h₂g₁ : h₁g₁.order = 0 := by
rw [h₁g₁₁.order_mul h₁f.meromorphicAt]
rw [h₂g₁₁]
simp
rw [add_comm]
rw [LinearOrderedAddCommGroupWithTop.add_neg_cancel_of_ne_top h₂f]
let g := h₁g₁.makeStronglyMeromorphicAt
use g
have h₁g : StronglyMeromorphicAt g z₀ := by
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic h₁g₁
have h₂g : h₁g.meromorphicAt.order = 0 := by
rw [← h₁g₁.order_congr (m₂ h₁g₁)]
exact h₂g₁
constructor
· apply analytic
· rw [h₂g]
· exact h₁g
· constructor
· rwa [← h₁g.order_eq_zero_iff]
· funext z
by_cases hz : z = z₀
· by_cases hOrd : h₁f.meromorphicAt.order.untop h₂f = 0
· simp [hOrd]
have : StronglyMeromorphicAt g₁ z₀ := by
unfold g₁
simp [hOrd]
have : (fun z => 1) * f = f := by
funext z
simp
rwa [this]
rw [hz]
unfold g
let A := makeStronglyMeromorphic_id this
rw [← A]
unfold g₁
rw [hOrd]
simp
· have : h₁f.meromorphicAt.order ≠ 0 := by
by_contra hC
simp_rw [hC] at hOrd
tauto
let A := h₁f.order_eq_zero_iff.not.1 this
simp at A
rw [hz, A]
simp
left
rw [zpow_eq_zero_iff]
assumption
· simp
have : g z = g₁ z := by
exact Eq.symm (m₁ h₁g₁ z hz)
rw [this]
unfold g₁
simp [hz]
rw [← mul_assoc]
rw [mul_inv_cancel₀]
simp
apply zpow_ne_zero
exact sub_ne_zero_of_ne hz

View File

@ -1,173 +0,0 @@
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicAt
import Mathlib.Algebra.BigOperators.Finprod
open Topology
/- Strongly MeromorphicOn -/
def StronglyMeromorphicOn
(f : )
(U : Set ) :=
∀ z ∈ U, StronglyMeromorphicAt f z
/- Strongly MeromorphicAt is Meromorphic -/
theorem StronglyMeromorphicOn.meromorphicOn
{f : }
{U : Set }
(hf : StronglyMeromorphicOn f U) :
MeromorphicOn f U := by
intro z hz
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
/- Strongly MeromorphicOn of non-negative order is analytic -/
theorem StronglyMeromorphicOn.analytic
{f : }
{U : Set }
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
∀ z ∈ U, AnalyticAt f z := by
intro z hz
apply StronglyMeromorphicAt.analytic
exact h₂f z hz
exact h₁f z hz
/- Analytic functions are strongly meromorphic -/
theorem AnalyticOn.stronglyMeromorphicOn
{f : }
{U : Set }
(h₁f : AnalyticOnNhd f U) :
StronglyMeromorphicOn f U := by
intro z hz
apply AnalyticAt.stronglyMeromorphicAt
exact h₁f z hz
/- Make strongly MeromorphicAt -/
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
:= by
intro z
by_cases hz : z ∈ U
· exact (hf z hz).makeStronglyMeromorphicAt z
· exact f z
theorem makeStronglyMeromorphicOn_changeDiscrete
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
apply Filter.eventually_iff_exists_mem.2
let A := (hf z₀ hz₀).eventually_analyticAt
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
use V
constructor
· assumption
· intro v hv
unfold MeromorphicOn.makeStronglyMeromorphicOn
by_cases h₂v : v ∈ U
· simp [h₂v]
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id]
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
· simp [h₂v]
theorem analyticAt_ratlPolynomial₁
{z : }
(d : )
(P : Finset ) :
z ∉ P → AnalyticAt (∏ u ∈ P, fun z ↦ (z - u) ^ d u) z := by
intro hz
rw [Finset.prod_fn]
apply Finset.analyticAt_prod
intro u hu
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
rw [sub_ne_zero, ne_comm]
exact ne_of_mem_of_not_mem hu hz
theorem stronglyMeromorphicOn_ratlPolynomial₂
{U : Set }
(d : )
(P : Finset ) :
StronglyMeromorphicOn (∏ u ∈ P, fun z ↦ (z - u) ^ d u) U := by
intro z hz
by_cases h₂z : z ∈ P
· rw [← Finset.mul_prod_erase P _ h₂z]
right
use d z
use ∏ x ∈ P.erase z, fun z => (z - x) ^ d x
constructor
· have : z ∉ P.erase z := Finset.not_mem_erase z P
apply analyticAt_ratlPolynomial₁ d (P.erase z) this
· constructor
· simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro u hu
apply zpow_ne_zero
rw [sub_ne_zero]
by_contra hCon
rw [hCon] at hu
let A := Finset.not_mem_erase u P
tauto
· exact Filter.Eventually.of_forall (congrFun rfl)
· apply AnalyticAt.stronglyMeromorphicAt
exact analyticAt_ratlPolynomial₁ d P (z := z) h₂z
theorem stronglyMeromorphicOn_ratlPolynomial₃
{U : Set }
(d : ) :
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite
· rw [finprod_eq_prod _ hd]
apply stronglyMeromorphicOn_ratlPolynomial₂ (U := U) d hd.toFinset
· rw [finprod_of_infinite_mulSupport hd]
apply AnalyticOn.stronglyMeromorphicOn
apply analyticOnNhd_const
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
{U : Set }
(d : )
(hd : Set.Finite d.support) :
(stronglyMeromorphicOn_ratlPolynomial₃ d (U := U)).meromorphicOn.divisor = d := by
sorry
theorem makeStronglyMeromorphicOn_changeDiscrete'
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
apply Mnhds
let A := makeStronglyMeromorphicOn_changeDiscrete hf hz₀
apply Filter.EventuallyEq.trans A
exact m₂ (hf z₀ hz₀)
unfold MeromorphicOn.makeStronglyMeromorphicOn
simp [hz₀]
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn
{f : }
{U : Set }
(hf : MeromorphicOn f U) :
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
intro z₀ hz₀
rw [stronglyMeromorphicAt_congr (makeStronglyMeromorphicOn_changeDiscrete' hf hz₀)]
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z₀ hz₀)

View File

@ -1,345 +0,0 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Data.Set.Finite
import Nevanlinna.analyticAt
import Nevanlinna.divisor
import Nevanlinna.meromorphicAt
import Nevanlinna.meromorphicOn
import Nevanlinna.meromorphicOn_divisor
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.mathlibAddOn
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
theorem MeromorphicOn.decompose₁
{f : }
{U : Set }
{z₀ : }
(h₁f : MeromorphicOn f U)
(h₂f : StronglyMeromorphicAt f z₀)
(h₃f : h₂f.meromorphicAt.order ≠ )
(hz₀ : z₀ ∈ U) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticAt g z₀)
∧ (g z₀ ≠ 0)
∧ (f = g * fun z ↦ (z - z₀) ^ (h₁f.divisor z₀)) := by
let h₁ := fun z ↦ (z - z₀) ^ (-h₁f.divisor z₀)
have h₁h₁ : MeromorphicOn h₁ U := by
apply MeromorphicOn.zpow
apply AnalyticOnNhd.meromorphicOn
apply AnalyticOnNhd.sub
exact analyticOnNhd_id
exact analyticOnNhd_const
let n : := (-h₁f.divisor z₀)
have h₂h₁ : (h₁h₁ z₀ hz₀).order = n := by
simp_rw [(h₁h₁ z₀ hz₀).order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· constructor
· simp
· apply eventually_nhdsWithin_of_forall
intro z hz
simp
let g₁ := f * h₁
have h₁g₁ : MeromorphicOn g₁ U := by
apply h₁f.mul h₁h₁
have h₂g₁ : (h₁g₁ z₀ hz₀).order = 0 := by
rw [(h₁f z₀ hz₀).order_mul (h₁h₁ z₀ hz₀)]
rw [h₂h₁]
unfold n
rw [MeromorphicOn.divisor_def₂ h₁f hz₀ h₃f]
conv =>
left
left
rw [Eq.symm (WithTop.coe_untop (h₁f z₀ hz₀).order h₃f)]
have
(a b c : )
(h : a + b = c) :
(a : WithTop ) + (b : WithTop ) = (c : WithTop ) := by
rw [← h]
simp
rw [this ((h₁f z₀ hz₀).order.untop h₃f) (-(h₁f z₀ hz₀).order.untop h₃f) 0]
simp
ring
let g := (h₁g₁ z₀ hz₀).makeStronglyMeromorphicAt
have h₂g : StronglyMeromorphicAt g z₀ := by
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (h₁g₁ z₀ hz₀)
have h₁g : MeromorphicOn g U := by
intro z hz
by_cases h₁z : z = z₀
· rw [h₁z]
apply h₂g.meromorphicAt
· apply (h₁g₁ z hz).congr
rw [eventuallyEq_nhdsWithin_iff]
rw [eventually_nhds_iff]
use {z₀}ᶜ
constructor
· intro y h₁y h₂y
let A := m₁ (h₁g₁ z₀ hz₀) y h₁y
unfold g
rw [← A]
· constructor
· exact isOpen_compl_singleton
· exact h₁z
have h₃g : (h₁g z₀ hz₀).order = 0 := by
unfold g
let B := m₂ (h₁g₁ z₀ hz₀)
let A := (h₁g₁ z₀ hz₀).order_congr B
rw [← A]
rw [h₂g₁]
have h₄g : AnalyticAt g z₀ := by
apply h₂g.analytic
rw [h₃g]
use g
constructor
· exact h₁g
· constructor
· exact h₄g
· constructor
· exact (h₂g.order_eq_zero_iff).mp h₃g
· funext z
by_cases hz : z = z₀
· rw [hz]
simp
by_cases h : h₁f.divisor z₀ = 0
· simp [h]
have h₂h₁ : h₁ = 1 := by
funext w
unfold h₁
simp [h]
have h₃g₁ : g₁ = f := by
unfold g₁
rw [h₂h₁]
simp
have h₄g₁ : StronglyMeromorphicAt g₁ z₀ := by
rwa [h₃g₁]
let A := h₄g₁.makeStronglyMeromorphic_id
unfold g
rw [← A, h₃g₁]
· have : (0 : ) ^ h₁f.divisor z₀ = (0 : ) := by
exact zero_zpow (h₁f.divisor z₀) h
rw [this]
simp
let A := h₂f.order_eq_zero_iff.not
simp at A
rw [← A]
unfold MeromorphicOn.divisor at h
simp [hz₀] at h
exact h.1
· simp
let B := m₁ (h₁g₁ z₀ hz₀) z hz
unfold g
rw [← B]
unfold g₁ h₁
simp [hz]
rw [mul_assoc]
rw [inv_mul_cancel₀]
simp
apply zpow_ne_zero
rwa [sub_ne_zero]
theorem MeromorphicOn.decompose₂
{f : }
{U : Set }
{P : Finset U}
(hf : StronglyMeromorphicOn f U) :
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
apply Finset.induction (p := fun (P : Finset U) ↦
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ) →
∃ g : , (MeromorphicOn g U)
∧ (∀ p : P, AnalyticAt g p)
∧ (∀ p : P, g p ≠ 0)
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
-- case empty
simp
exact hf.meromorphicOn
-- case insert
intro u P hu iHyp
intro hOrder
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
have h₀ : AnalyticAt (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u := by
have : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) = (fun z => ∏ p : P, (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
funext w
simp
rw [this]
apply Finset.analyticAt_prod
intro p hp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₁ : (∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) u ≠ 0 := by
simp only [Finset.prod_apply]
rw [Finset.prod_ne_zero_iff]
intro p hp
apply zpow_ne_zero
by_contra hCon
rw [sub_eq_zero] at hCon
have : p.1 = u := by
exact SetCoe.ext (_root_.id (Eq.symm hCon))
rw [← this] at hu
simp [hp] at hu
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
rw [stronglyMeromorphicAt_of_mul_analytic h₀ h₁]
rw [← h₄g₀]
exact hf u u.2
have h₆g₀ : (h₁g₀ u u.2).order ≠ := by
by_contra hCon
let A := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
simp_rw [← h₄g₀, hCon] at A
simp at A
let B := hOrder u (Finset.mem_insert_self u P)
tauto
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
use g
· constructor
· exact h₁g
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· let A := h₂g₀ ⟨v₁, hv⟩
rw [h₄g] at A
rw [← analyticAt_of_mul_analytic] at A
simp at A
exact A
--
simp
apply AnalyticAt.zpow
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
--
apply zpow_ne_zero
simp
by_contra hCon
rw [sub_eq_zero] at hCon
have : v₁ = u := by
exact SetCoe.ext hCon
rw [this] at hv
tauto
· constructor
· intro ⟨v₁, v₂⟩
simp
simp at v₂
rcases v₂ with hv|hv
· rwa [hv]
· by_contra hCon
let A := h₃g₀ ⟨v₁,hv⟩
rw [h₄g] at A
simp at A
tauto
· conv =>
left
rw [h₄g₀, h₄g]
simp
rw [mul_assoc]
congr
rw [Finset.prod_insert]
simp
congr
have : (hf u u.2).meromorphicAt.order = (h₁g₀ u u.2).order := by
have h₅g₀ : f =ᶠ[𝓝 u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact Eq.eventuallyEq h₄g₀
have h₆g₀ : f =ᶠ[𝓝[≠] u.1] (g₀ * ∏ p : P, fun z => (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
exact eventuallyEq_nhdsWithin_of_eqOn fun ⦃x⦄ a => congrFun h₄g₀ x
rw [(hf u u.2).meromorphicAt.order_congr h₆g₀]
let C := (h₁g₀ u u.2).order_mul h₀.meromorphicAt
rw [C]
let D := h₀.order_eq_zero_iff.2 h₁
let E := h₀.meromorphicAt_order
rw [E, D]
simp
have : hf.meromorphicOn.divisor u = h₁g₀.divisor u := by
unfold MeromorphicOn.divisor
simp
rw [this]
rw [this]
--
simpa
theorem MeromorphicOn.decompose₃
{f : }
{U : Set }
(h₁U : IsCompact U)
(h₂U : IsConnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u : U, f u ≠ 0) :
∃ g : , (MeromorphicOn g U)
∧ (AnalyticOn g U)
∧ (∀ u : U, g u ≠ 0)
∧ (f = g * ∏ᶠ u, fun z ↦ (z - u) ^ (h₁f.meromorphicOn.divisor u)) := by
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ := by
apply MeromorphicOn.order_ne_top h₂U h₁f h₂f
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
let P := (h₄f.preimage Set.injOn_subtype_val : Set.Finite P').toFinset
have hP : ∀ p ∈ P, (h₁f p p.2).meromorphicAt.order ≠ := by
intro p hp
apply h₃f
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP
let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1
have h₂h : StronglyMeromorphicOn h U := by
unfold h
apply stronglyMeromorphicOn_ratlPolynomial₂
have h₁h : MeromorphicOn h U := by
exact StronglyMeromorphicOn.meromorphicOn h₂h
have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by
sorry
use g
constructor
· exact h₁g
· constructor
· sorry
· constructor
· sorry
· conv =>
left
rw [h₄g]
congr
simp
sorry

View File

@ -5,17 +5,17 @@
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "b100ff2565805e9f30a482788b3fc66937a7f38a",
"rev": "46fed98b5cac2b1ea64e363b420c382ed1af0d85",
"name": "batteries",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
"inherited": true,
"configFile": "lakefile.toml"},
"configFile": "lakefile.lean"},
{"url": "https://github.com/leanprover-community/quote4",
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "303b23fbcea94ac4f96e590c1cad6618fd4f5f41",
"rev": "2c8ae451ce9ffc83554322b14437159c1a9703f9",
"name": "Qq",
"manifestFile": "lake-manifest.json",
"inputRev": "master",
@ -25,7 +25,7 @@
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "de91b59101763419997026c35a41432ac8691f15",
"rev": "662f986ad3c5ad6ab1a1726b3c04f5ec425aa9f7",
"name": "aesop",
"manifestFile": "lake-manifest.json",
"inputRev": "master",
@ -35,17 +35,17 @@
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "1383e72b40dd62a566896a6e348ffe868801b172",
"rev": "eb08eee94098fe530ccd6d8751a86fe405473d4c",
"name": "proofwidgets",
"manifestFile": "lake-manifest.json",
"inputRev": "v0.0.46",
"inputRev": "v0.0.42",
"inherited": true,
"configFile": "lakefile.lean"},
{"url": "https://github.com/leanprover/lean4-cli",
"type": "git",
"subDir": null,
"scope": "leanprover",
"rev": "726b3c9ad13acca724d4651f14afc4804a7b0e4d",
"scope": "",
"rev": "2cf1030dc2ae6b3632c84a09350b675ef3e347d0",
"name": "Cli",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
@ -55,37 +55,27 @@
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "b0b73e5bc33f1bc4d3c0f254630dd0e262cecc08",
"rev": "fb7841a6f4fb389ec0e47dd4677844d49906af3c",
"name": "importGraph",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
"inherited": true,
"configFile": "lakefile.toml"},
{"url": "https://github.com/leanprover-community/LeanSearchClient",
{"url": "https://github.com/siddhartha-gadgil/LeanSearchClient.git",
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "86d0d0584f5cd165353e2f8a30c455cd0e168ac2",
"scope": "",
"rev": "c260ed920e2ebd23ef9fc8ca3fd24115e04c18b1",
"name": "LeanSearchClient",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
"inherited": true,
"configFile": "lakefile.toml"},
{"url": "https://github.com/leanprover-community/plausible",
"type": "git",
"subDir": null,
"scope": "leanprover-community",
"rev": "42dc02bdbc5d0c2f395718462a76c3d87318f7fa",
"name": "plausible",
"manifestFile": "lake-manifest.json",
"inputRev": "main",
"inherited": true,
"configFile": "lakefile.toml"},
{"url": "https://github.com/leanprover-community/mathlib4.git",
"type": "git",
"subDir": null,
"scope": "",
"rev": "e3d7d7f053ea862ffb7d1613eff6de0f2e3e8e14",
"rev": "4e40837aec257729b3c38dc3e635fc64a7a8a8c1",
"name": "mathlib",
"manifestFile": "lake-manifest.json",
"inputRev": null,

View File

@ -1 +1 @@
leanprover/lean4:v4.14.0-rc2
leanprover/lean4:v4.12.0-rc1