174 lines
4.8 KiB
Plaintext
174 lines
4.8 KiB
Plaintext
import Nevanlinna.meromorphicOn_divisor
|
||
import Nevanlinna.stronglyMeromorphicAt
|
||
import Mathlib.Algebra.BigOperators.Finprod
|
||
|
||
open Topology
|
||
|
||
|
||
/- Strongly MeromorphicOn -/
|
||
def StronglyMeromorphicOn
|
||
(f : ℂ → ℂ)
|
||
(U : Set ℂ) :=
|
||
∀ z ∈ U, StronglyMeromorphicAt f z
|
||
|
||
|
||
/- Strongly MeromorphicAt is Meromorphic -/
|
||
theorem StronglyMeromorphicOn.meromorphicOn
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : StronglyMeromorphicOn f U) :
|
||
MeromorphicOn f U := by
|
||
intro z hz
|
||
exact StronglyMeromorphicAt.meromorphicAt (hf z hz)
|
||
|
||
|
||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
||
theorem StronglyMeromorphicOn.analytic
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : StronglyMeromorphicOn f U)
|
||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
|
||
∀ z ∈ U, AnalyticAt ℂ f z := by
|
||
intro z hz
|
||
apply StronglyMeromorphicAt.analytic
|
||
exact h₂f z hz
|
||
exact h₁f z hz
|
||
|
||
|
||
/- Analytic functions are strongly meromorphic -/
|
||
theorem AnalyticOn.stronglyMeromorphicOn
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(h₁f : AnalyticOnNhd ℂ f U) :
|
||
StronglyMeromorphicOn f U := by
|
||
intro z hz
|
||
apply AnalyticAt.stronglyMeromorphicAt
|
||
exact h₁f z hz
|
||
|
||
|
||
/- Make strongly MeromorphicAt -/
|
||
noncomputable def MeromorphicOn.makeStronglyMeromorphicOn
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : MeromorphicOn f U) :
|
||
ℂ → ℂ := by
|
||
intro z
|
||
by_cases hz : z ∈ U
|
||
· exact (hf z hz).makeStronglyMeromorphicAt z
|
||
· exact f z
|
||
|
||
|
||
theorem makeStronglyMeromorphicOn_changeDiscrete
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz₀ : z₀ ∈ U) :
|
||
hf.makeStronglyMeromorphicOn =ᶠ[𝓝[≠] z₀] f := by
|
||
apply Filter.eventually_iff_exists_mem.2
|
||
let A := (hf z₀ hz₀).eventually_analyticAt
|
||
obtain ⟨V, h₁V, h₂V⟩ := Filter.eventually_iff_exists_mem.1 A
|
||
use V
|
||
constructor
|
||
· assumption
|
||
· intro v hv
|
||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||
by_cases h₂v : v ∈ U
|
||
· simp [h₂v]
|
||
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id]
|
||
exact AnalyticAt.stronglyMeromorphicAt (h₂V v hv)
|
||
· simp [h₂v]
|
||
|
||
|
||
theorem analyticAt_ratlPolynomial₁
|
||
{z : ℂ}
|
||
(d : ℂ → ℤ)
|
||
(P : Finset ℂ) :
|
||
z ∉ P → AnalyticAt ℂ (∏ u ∈ P, fun z ↦ (z - u) ^ d u) z := by
|
||
intro hz
|
||
rw [Finset.prod_fn]
|
||
apply Finset.analyticAt_prod
|
||
intro u hu
|
||
apply AnalyticAt.zpow
|
||
apply AnalyticAt.sub
|
||
apply analyticAt_id
|
||
apply analyticAt_const
|
||
rw [sub_ne_zero, ne_comm]
|
||
exact ne_of_mem_of_not_mem hu hz
|
||
|
||
|
||
theorem stronglyMeromorphicOn_ratlPolynomial₂
|
||
{U : Set ℂ}
|
||
(d : ℂ → ℤ)
|
||
(P : Finset ℂ) :
|
||
StronglyMeromorphicOn (∏ u ∈ P, fun z ↦ (z - u) ^ d u) U := by
|
||
|
||
intro z hz
|
||
by_cases h₂z : z ∈ P
|
||
· rw [← Finset.mul_prod_erase P _ h₂z]
|
||
right
|
||
use d z
|
||
use ∏ x ∈ P.erase z, fun z => (z - x) ^ d x
|
||
constructor
|
||
· have : z ∉ P.erase z := Finset.not_mem_erase z P
|
||
apply analyticAt_ratlPolynomial₁ d (P.erase z) this
|
||
· constructor
|
||
· simp only [Finset.prod_apply]
|
||
rw [Finset.prod_ne_zero_iff]
|
||
intro u hu
|
||
apply zpow_ne_zero
|
||
rw [sub_ne_zero]
|
||
by_contra hCon
|
||
rw [hCon] at hu
|
||
let A := Finset.not_mem_erase u P
|
||
tauto
|
||
· exact Filter.Eventually.of_forall (congrFun rfl)
|
||
· apply AnalyticAt.stronglyMeromorphicAt
|
||
exact analyticAt_ratlPolynomial₁ d P (z := z) h₂z
|
||
|
||
|
||
|
||
theorem stronglyMeromorphicOn_ratlPolynomial₃
|
||
{U : Set ℂ}
|
||
(d : ℂ → ℤ) :
|
||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||
by_cases hd : (Function.mulSupport fun u z => (z - u) ^ d u).Finite
|
||
· rw [finprod_eq_prod _ hd]
|
||
apply stronglyMeromorphicOn_ratlPolynomial₂ (U := U) d hd.toFinset
|
||
· rw [finprod_of_infinite_mulSupport hd]
|
||
apply AnalyticOn.stronglyMeromorphicOn
|
||
apply analyticOnNhd_const
|
||
|
||
|
||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||
{U : Set ℂ}
|
||
(d : ℂ → ℤ)
|
||
(hd : Set.Finite d.support) :
|
||
(stronglyMeromorphicOn_ratlPolynomial₃ d (U := U)).meromorphicOn.divisor = d := by
|
||
sorry
|
||
|
||
|
||
theorem makeStronglyMeromorphicOn_changeDiscrete'
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : MeromorphicOn f U)
|
||
(hz₀ : z₀ ∈ U) :
|
||
hf.makeStronglyMeromorphicOn =ᶠ[𝓝 z₀] (hf z₀ hz₀).makeStronglyMeromorphicAt := by
|
||
apply Mnhds
|
||
let A := makeStronglyMeromorphicOn_changeDiscrete hf hz₀
|
||
apply Filter.EventuallyEq.trans A
|
||
exact m₂ (hf z₀ hz₀)
|
||
unfold MeromorphicOn.makeStronglyMeromorphicOn
|
||
simp [hz₀]
|
||
|
||
|
||
theorem StronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
||
{f : ℂ → ℂ}
|
||
{U : Set ℂ}
|
||
(hf : MeromorphicOn f U) :
|
||
StronglyMeromorphicOn hf.makeStronglyMeromorphicOn U := by
|
||
intro z₀ hz₀
|
||
rw [stronglyMeromorphicAt_congr (makeStronglyMeromorphicOn_changeDiscrete' hf hz₀)]
|
||
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z₀ hz₀)
|