Compare commits

..

4 Commits

Author SHA1 Message Date
Stefan Kebekus 5a984253c6 Update holomorphic_JensenFormula2.lean 2024-09-12 07:52:26 +02:00
Stefan Kebekus 42c1c14edf Delete diffOpGrothendieck.lean 2024-09-12 07:13:35 +02:00
Stefan Kebekus b988031047 Update analyticAt.lean 2024-09-12 07:12:03 +02:00
Stefan Kebekus dbea68061b Update analyticAt.lean 2024-09-12 07:04:00 +02:00
3 changed files with 66 additions and 23 deletions

View File

@ -123,7 +123,7 @@ theorem eventually_nhds_comp_composition
exact h₁t ( y) hy
· constructor
· apply IsOpen.preimage
exact ContinuousLinearEquiv.continuous
exact h
exact h₂t
· exact h₃t
@ -132,11 +132,25 @@ theorem AnalyticAt.order_congr
{f₁ f₂ : }
{z₀ : }
(hf₁ : AnalyticAt f₁ z₀)
(hf₂ : AnalyticAt f₂ z₀)
(hf : ∀ᶠ (z : ) in nhds z₀, f₁ z = f₂ z) :
hf₁.order = hf₂.order := by
(hf : f₁ =ᶠ[nhds z₀] f₂) :
hf₁.order = (hf₁.congr hf).order := by
sorry
by_cases h₁f₁ : hf₁.order =
rw [h₁f₁, eq_comm, AnalyticAt.order_eq_top_iff]
rw [AnalyticAt.order_eq_top_iff] at h₁f₁
exact Filter.EventuallyEq.rw h₁f₁ (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
--
let n := hf₁.order.toNat
have hn : hf₁.order = n := Eq.symm (ENat.coe_toNat h₁f₁)
rw [hn, eq_comm, AnalyticAt.order_eq_nat_iff]
rw [AnalyticAt.order_eq_nat_iff] at hn
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
use g
constructor
· assumption
· constructor
· assumption
· exact Filter.EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (id (Filter.EventuallyEq.symm hf))
theorem AnalyticAt.order_comp_CLE
@ -151,9 +165,10 @@ theorem AnalyticAt.order_comp_CLE
rw [AnalyticAt.order_eq_top_iff] at h₁f
let A := eventually_nhds_comp_composition h₁f .continuous
simp at A
have : AnalyticAt (0 : ) z₀ := by apply analyticAt_const
rw [AnalyticAt.order_congr (hf.comp (.analyticAt z₀)) this A]
rw [AnalyticAt.order_congr (hf.comp (.analyticAt z₀)) A]
have : AnalyticAt (0 : ) z₀ := by
apply analyticAt_const
have : this.order = := by
rw [AnalyticAt.order_eq_top_iff]
simp
@ -176,7 +191,7 @@ theorem AnalyticAt.order_comp_CLE
exact t₀
apply AnalyticAt.comp h₁g
exact ContinuousLinearEquiv.analyticAt z₀
rw [AnalyticAt.order_congr (hf.comp (.analyticAt z₀)) this A]
rw [AnalyticAt.order_congr (hf.comp (.analyticAt z₀)) A]
simp
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (.analyticAt z₀)))]

View File

@ -1,9 +0,0 @@
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
/-
Here we would like to define differential operators, following EGA 4-1, §20.
This is work to be done in the future.
-/

View File

@ -301,25 +301,62 @@ theorem jensen
(h₂f : f 0 ≠ 0) :
log ‖f 0‖ = -∑ᶠ s, (h₁f.order s).toNat * log (R * ‖s.1‖⁻¹) + (2 * π)⁻¹ * ∫ (x : ) in (0)..(2 * π), log ‖f (circleMap 0 R x)‖ := by
let F := fun z ↦ f (R • z)
let : ≃L[] :=
{
toFun := fun x ↦ R * x
map_add' := fun x y => DistribSMul.smul_add R x y
map_smul' := fun m x => mul_smul_comm m (↑R) x
invFun := fun x ↦ R⁻¹ * x
left_inv := by
intro x
simp
rw [← mul_assoc, mul_comm, inv_mul_cancel₀, mul_one]
simp
exact ne_of_gt hR
right_inv := by
intro x
simp
rw [← mul_assoc, mul_inv_cancel₀, one_mul]
simp
exact ne_of_gt hR
continuous_toFun := continuous_const_smul R
continuous_invFun := continuous_const_smul R⁻¹
}
let F := f ∘
have h₁F : AnalyticOn F (Metric.closedBall 0 1) := by
apply AnalyticOn.comp (t := Metric.closedBall 0 R)
exact h₁f
intro x _
apply .toContinuousLinearMap.analyticAt x
intro x hx
have : x = R * x := by rfl
rw [this]
simp
simp at hx
rw [abs_of_pos hR]
calc R * Complex.abs x
_ ≤ R * 1 := by exact (mul_le_mul_iff_of_pos_left hR).mpr hx
_ = R := by simp
sorry
have h₂F : F 0 ≠ 0 := by sorry
have h₂F : F 0 ≠ 0 := by
dsimp [F]
have : 0 = R * 0 := by rfl
rw [this]
simpa
let A := jensen_case_R_eq_one F h₁F h₂F
dsimp [F] at A
have {x : } : x = R * x := by rfl
repeat
simp_rw [this] at A
simp at A
simp
rw [mul_zero] at A
rw [A]
simp
simp_rw [← const_mul_circleMap_zero]
simp