Compare commits
2 Commits
9410087ddf
...
9d4657fb81
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 9d4657fb81 | |
Stefan Kebekus | 9ea3dcb2d6 |
|
@ -23,6 +23,15 @@ theorem analyticAtZeroDivisorSupport
|
||||||
simp [h₁f] at h
|
simp [h₁f] at h
|
||||||
|
|
||||||
|
|
||||||
|
theorem zeroDivisor_eq_ord_AtZeroDivisorSupport
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z : ℂ}
|
||||||
|
(h : z ∈ Function.support (zeroDivisor f)) :
|
||||||
|
zeroDivisor f z = (analyticAtZeroDivisorSupport h).order.toNat := by
|
||||||
|
unfold zeroDivisor
|
||||||
|
simp [analyticAtZeroDivisorSupport h]
|
||||||
|
|
||||||
|
|
||||||
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by
|
lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by
|
||||||
constructor
|
constructor
|
||||||
· intro H₁
|
· intro H₁
|
||||||
|
@ -36,61 +45,122 @@ lemma toNatEqSelf_iff {n : ℕ∞} : n.toNat = n ↔ ∃ m : ℕ, m = n := by
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : ℕ, m = n := by
|
||||||
|
rw [← ENat.some_eq_coe, ← WithTop.ne_top_iff_exists]
|
||||||
|
contrapose; simp; tauto
|
||||||
|
|
||||||
|
|
||||||
|
theorem zeroDivisor_localDescription
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||||
|
∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
|
||||||
|
|
||||||
|
have A : zeroDivisor f ↑z₀ ≠ 0 := by exact h
|
||||||
|
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport h
|
||||||
|
rw [B] at A
|
||||||
|
have C := natural_if_toNatNeZero A
|
||||||
|
obtain ⟨m, hm⟩ := C
|
||||||
|
have h₂m : m ≠ 0 := by
|
||||||
|
rw [← hm] at A
|
||||||
|
simp at A
|
||||||
|
assumption
|
||||||
|
rw [eq_comm] at hm
|
||||||
|
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport h) m
|
||||||
|
let F := hm
|
||||||
|
rw [E] at F
|
||||||
|
|
||||||
|
have : m = zeroDivisor f z₀ := by
|
||||||
|
rw [B, hm]
|
||||||
|
simp
|
||||||
|
rwa [this] at F
|
||||||
|
|
||||||
|
|
||||||
|
theorem zeroDivisor_zeroSet
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||||
|
f z₀ = 0 := by
|
||||||
|
obtain ⟨g, _, _, h₃⟩ := zeroDivisor_localDescription h
|
||||||
|
rw [Filter.Eventually.self_of_nhds h₃]
|
||||||
|
simp
|
||||||
|
left
|
||||||
|
exact h
|
||||||
|
|
||||||
|
|
||||||
theorem discreteZeros
|
theorem discreteZeros
|
||||||
{f : ℂ → ℂ} :
|
{f : ℂ → ℂ} :
|
||||||
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
DiscreteTopology (Function.support (zeroDivisor f)) := by
|
||||||
apply singletons_open_iff_discrete.mp
|
|
||||||
|
simp_rw [← singletons_open_iff_discrete, Metric.isOpen_singleton_iff]
|
||||||
intro z
|
intro z
|
||||||
|
|
||||||
let A := analyticAtZeroDivisorSupport z.2
|
have A : zeroDivisor f ↑z ≠ 0 := by exact z.2
|
||||||
let c : WithTop ℕ := A.order
|
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport z.2
|
||||||
let B := AnalyticAt.order_eq_nat_iff A
|
rw [B] at A
|
||||||
let n := zeroDivisor f z.1
|
have C := natural_if_toNatNeZero A
|
||||||
|
obtain ⟨m, hm⟩ := C
|
||||||
|
have h₂m : m ≠ 0 := by
|
||||||
|
rw [← hm] at A
|
||||||
|
simp at A
|
||||||
|
assumption
|
||||||
|
rw [eq_comm] at hm
|
||||||
|
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport z.2) m
|
||||||
|
rw [E] at hm
|
||||||
|
|
||||||
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hm
|
||||||
|
|
||||||
|
rw [Metric.eventually_nhds_iff_ball] at h₃g
|
||||||
|
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑z) ε, g y ≠ 0 := by
|
||||||
|
have h₄g : ContinuousAt g z := AnalyticAt.continuousAt h₁g
|
||||||
|
have : {0}ᶜ ∈ nhds (g z) := by
|
||||||
|
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||||
|
|
||||||
have : ∃ a : ℕ, a = A.order := by
|
let F := h₄g.preimage_mem_nhds this
|
||||||
rw [← ENat.some_eq_coe]
|
rw [Metric.mem_nhds_iff] at F
|
||||||
rw [← WithTop.ne_top_iff_exists]
|
obtain ⟨ε, h₁ε, h₂ε⟩ := F
|
||||||
by_contra H
|
use ε
|
||||||
rw [AnalyticAt.order_eq_top_iff] at H
|
constructor; exact h₁ε
|
||||||
|
intro y hy
|
||||||
|
let G := h₂ε hy
|
||||||
|
simp at G
|
||||||
|
exact G
|
||||||
|
obtain ⟨ε₁, h₁ε₁⟩ := this
|
||||||
|
|
||||||
|
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
|
||||||
|
use min ε₁ ε₂
|
||||||
|
constructor
|
||||||
|
· have : 0 < min ε₁ ε₂ := by
|
||||||
|
rw [lt_min_iff]
|
||||||
|
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁
|
||||||
|
exact this
|
||||||
|
|
||||||
|
intro y
|
||||||
|
intro h₁y
|
||||||
|
|
||||||
dsimp [n, zeroDivisor]
|
have h₂y : ↑y ∈ Metric.ball (↑z) ε₂ := by
|
||||||
simp [A]
|
simp
|
||||||
|
calc dist y z
|
||||||
|
_ < min ε₁ ε₂ := by assumption
|
||||||
|
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂
|
||||||
|
|
||||||
|
have h₃y : ↑y ∈ Metric.ball (↑z) ε₁ := by
|
||||||
|
simp
|
||||||
|
calc dist y z
|
||||||
|
_ < min ε₁ ε₂ := by assumption
|
||||||
|
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||||
|
|
||||||
|
let F := h₂ε₂ y.1 h₂y
|
||||||
|
rw [zeroDivisor_zeroSet y.2] at F
|
||||||
|
simp at F
|
||||||
|
|
||||||
|
simp [h₂m] at F
|
||||||
|
|
||||||
|
have : g y.1 ≠ 0 := by
|
||||||
sorry
|
exact h₁ε₁.2 y h₃y
|
||||||
let C := (B n).1 this
|
simp [this] at F
|
||||||
|
ext
|
||||||
apply Metric.isOpen_singleton_iff.mpr
|
rwa [sub_eq_zero] at F
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/-
|
|
||||||
|
|
||||||
Try this: refine Metric.isOpen_singleton_iff.mpr ?_
|
|
||||||
Remaining subgoals:
|
|
||||||
⊢ ∃ ε > 0, ∀ (y : ↑(Function.support (zeroDivisor f))), dist y z < ε → y = z
|
|
||||||
Suggestions
|
|
||||||
Try this: refine isClosed_compl_iff.mp ?_
|
|
||||||
Remaining subgoals:
|
|
||||||
⊢ IsClosed {z}ᶜ
|
|
||||||
Suggestions
|
|
||||||
Try this: refine disjoint_frontier_iff_isOpen.mp ?_
|
|
||||||
Remaining subgoals:
|
|
||||||
⊢ Disjoint (frontier {z}) {z}
|
|
||||||
Suggestions
|
|
||||||
Try this: refine isOpen_iff_forall_mem_open.mpr ?_
|
|
||||||
Remaining subgoals:
|
|
||||||
⊢ ∀ x ∈ {z}, ∃ t ⊆ {z}, IsOpen t ∧ x ∈ t
|
|
||||||
|
|
||||||
-/
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
theorem zeroDivisor_finiteOnCompact
|
theorem zeroDivisor_finiteOnCompact
|
||||||
|
@ -105,7 +175,22 @@ theorem eliminatingZeros
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
{R : ℝ}
|
{R : ℝ}
|
||||||
(h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z)
|
(h₁f : ∀ z ∈ Metric.closedBall z₀ R, HolomorphicAt f z)
|
||||||
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
||||||
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
||||||
|
|
||||||
|
let F : ℂ → ℂ := by
|
||||||
|
intro z
|
||||||
|
if hz : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f) then
|
||||||
|
exact 0
|
||||||
|
else
|
||||||
|
exact f z * (∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a))⁻¹
|
||||||
|
|
||||||
|
use F
|
||||||
|
intro z hz
|
||||||
|
by_cases h₂z : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f)
|
||||||
|
· -- Positive case
|
||||||
|
sorry
|
||||||
|
|
||||||
|
· -- Negative case
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue