Update holomorphic_zero.lean
This commit is contained in:
parent
9ea3dcb2d6
commit
9d4657fb81
@ -50,13 +50,43 @@ lemma natural_if_toNatNeZero {n : ℕ∞} : n.toNat ≠ 0 → ∃ m : ℕ, m = n
|
||||
contrapose; simp; tauto
|
||||
|
||||
|
||||
theorem zeroDivisor_in_zeroSet
|
||||
theorem zeroDivisor_localDescription
|
||||
{f : ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(h : z ∈ Function.support (zeroDivisor f)) :
|
||||
f z = 0 := by
|
||||
{z₀ : ℂ}
|
||||
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||
∃ (g : ℂ → ℂ), AnalyticAt ℂ g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ (zeroDivisor f z₀) • g z := by
|
||||
|
||||
have A : zeroDivisor f ↑z₀ ≠ 0 := by exact h
|
||||
let B := zeroDivisor_eq_ord_AtZeroDivisorSupport h
|
||||
rw [B] at A
|
||||
have C := natural_if_toNatNeZero A
|
||||
obtain ⟨m, hm⟩ := C
|
||||
have h₂m : m ≠ 0 := by
|
||||
rw [← hm] at A
|
||||
simp at A
|
||||
assumption
|
||||
rw [eq_comm] at hm
|
||||
let E := AnalyticAt.order_eq_nat_iff (analyticAtZeroDivisorSupport h) m
|
||||
let F := hm
|
||||
rw [E] at F
|
||||
|
||||
have : m = zeroDivisor f z₀ := by
|
||||
rw [B, hm]
|
||||
simp
|
||||
rwa [this] at F
|
||||
|
||||
|
||||
theorem zeroDivisor_zeroSet
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h : z₀ ∈ Function.support (zeroDivisor f)) :
|
||||
f z₀ = 0 := by
|
||||
obtain ⟨g, _, _, h₃⟩ := zeroDivisor_localDescription h
|
||||
rw [Filter.Eventually.self_of_nhds h₃]
|
||||
simp
|
||||
left
|
||||
exact h
|
||||
|
||||
sorry
|
||||
|
||||
theorem discreteZeros
|
||||
{f : ℂ → ℂ} :
|
||||
@ -121,7 +151,7 @@ theorem discreteZeros
|
||||
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
|
||||
|
||||
let F := h₂ε₂ y.1 h₂y
|
||||
rw [zeroDivisor_in_zeroSet y.2] at F
|
||||
rw [zeroDivisor_zeroSet y.2] at F
|
||||
simp at F
|
||||
|
||||
simp [h₂m] at F
|
||||
@ -145,7 +175,22 @@ theorem eliminatingZeros
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
{R : ℝ}
|
||||
(h₁f : ∀ z ∈ Metric.ball z₀ R, HolomorphicAt f z)
|
||||
(h₁f : ∀ z ∈ Metric.closedBall z₀ R, HolomorphicAt f z)
|
||||
(h₂f : ∃ z ∈ Metric.ball z₀ R, f z ≠ 0) :
|
||||
∃ F : ℂ → ℂ, ∀ z ∈ Metric.ball z₀ R, (HolomorphicAt F z) ∧ (f z = (F z) * ∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a) ) := by
|
||||
sorry
|
||||
|
||||
let F : ℂ → ℂ := by
|
||||
intro z
|
||||
if hz : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f) then
|
||||
exact 0
|
||||
else
|
||||
exact f z * (∏ᶠ a ∈ Metric.ball z₀ R, (z - a) ^ (zeroDivisor f a))⁻¹
|
||||
|
||||
use F
|
||||
intro z hz
|
||||
by_cases h₂z : z ∈ (Metric.closedBall z₀ R) ∩ Function.support (zeroDivisor f)
|
||||
· -- Positive case
|
||||
sorry
|
||||
|
||||
· -- Negative case
|
||||
sorry
|
||||
|
Loading…
Reference in New Issue
Block a user