Compare commits
No commits in common. "4d3332b15d92456f0c64922b691722e08b82f1d8" and "89793b75d841eea2064a1592c85396ab814e0e82" have entirely different histories.
4d3332b15d
...
89793b75d8
|
@ -246,7 +246,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
{s : Set ℂ}
|
{s : Set ℂ}
|
||||||
(hs : IsOpen s)
|
(hs : IsOpen s)
|
||||||
(h₁ : DifferentiableOn ℂ f s)
|
(h₁ : DifferentiableOn ℂ f s)
|
||||||
(h₂ : ∀ z ∈ s, f z ≠ 0) :
|
(h₂ : ∀ z ∈ s, f z ≠ 0)
|
||||||
|
(h₃ : ∀ z ∈ s, f z ∈ Complex.slitPlane) :
|
||||||
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
HarmonicOn (Real.log ∘ Complex.normSq ∘ f) s := by
|
||||||
|
|
||||||
let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s
|
let s₁ : Set ℂ := { z | f z ∈ Complex.slitPlane} ∩ s
|
||||||
|
@ -268,8 +269,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
-- ∀ z ∈ s₁, f z ≠ 0
|
-- ∀ z ∈ s₁, f z ≠ 0
|
||||||
exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz)
|
exact fun z hz ↦ h₂ z (Set.mem_of_mem_inter_right hz)
|
||||||
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
|
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
|
||||||
intro z hz
|
exact fun z hz ↦ h₃ z (Set.mem_of_mem_inter_right hz)
|
||||||
apply hz.1
|
|
||||||
|
|
||||||
let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s
|
let s₂ : Set ℂ := { z | -f z ∈ Complex.slitPlane} ∩ s
|
||||||
|
|
||||||
|
@ -314,23 +314,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
|
||||||
rw [← this]
|
rw [← this]
|
||||||
exact harm₁
|
exact harm₁
|
||||||
· use s₂
|
· use s₂
|
||||||
constructor
|
sorry
|
||||||
· exact hs₂
|
|
||||||
· constructor
|
|
||||||
· constructor
|
|
||||||
· simp
|
|
||||||
rw [Complex.mem_slitPlane_iff]
|
|
||||||
rw [Complex.mem_slitPlane_iff] at hfz
|
|
||||||
simp at hfz
|
|
||||||
· have : s₂ = s ∩ s₂ := by
|
|
||||||
apply Set.right_eq_inter.mpr
|
|
||||||
exact Set.inter_subset_right {z | -f z ∈ Complex.slitPlane} s
|
|
||||||
rw [← this]
|
|
||||||
have : Real.log ∘ ⇑Complex.normSq ∘ f = Real.log ∘ ⇑Complex.normSq ∘ (-f) := by
|
|
||||||
funext x
|
|
||||||
simp
|
|
||||||
rw [this]
|
|
||||||
exact harm₂
|
|
||||||
|
|
||||||
|
|
||||||
theorem log_normSq_of_holomorphic_is_harmonic
|
theorem log_normSq_of_holomorphic_is_harmonic
|
||||||
|
|
Loading…
Reference in New Issue