Compare commits

..

2 Commits

Author SHA1 Message Date
Stefan Kebekus
4d3332b15d Update complexHarmonic.examples.lean 2024-06-03 18:53:55 +02:00
Stefan Kebekus
c595da782c Update complexHarmonic.examples.lean 2024-06-03 18:45:31 +02:00

View File

@@ -246,8 +246,7 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
{s : Set }
(hs : IsOpen s)
(h₁ : DifferentiableOn f s)
(h₂ : z s, f z 0)
(h₃ : z s, f z Complex.slitPlane) :
(h₂ : z s, f z 0) :
HarmonicOn (Real.log Complex.normSq f) s := by
let s₁ : Set := { z | f z Complex.slitPlane} s
@@ -269,7 +268,8 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
-- ∀ z ∈ s₁, f z ≠ 0
exact fun z hz h₂ z (Set.mem_of_mem_inter_right hz)
-- ∀ z ∈ s₁, f z ∈ Complex.slitPlane
exact fun z hz h₃ z (Set.mem_of_mem_inter_right hz)
intro z hz
apply hz.1
let s₂ : Set := { z | -f z Complex.slitPlane} s
@@ -314,7 +314,23 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
rw [ this]
exact harm₁
· use s₂
sorry
constructor
· exact hs₂
· constructor
· constructor
· simp
rw [Complex.mem_slitPlane_iff]
rw [Complex.mem_slitPlane_iff] at hfz
simp at hfz
· have : s₂ = s s₂ := by
apply Set.right_eq_inter.mpr
exact Set.inter_subset_right {z | -f z Complex.slitPlane} s
rw [ this]
have : Real.log Complex.normSq f = Real.log Complex.normSq (-f) := by
funext x
simp
rw [this]
exact harm₂
theorem log_normSq_of_holomorphic_is_harmonic