Compare commits
4 Commits
4981e92c1c
...
38179d24c0
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | 38179d24c0 | |
Stefan Kebekus | 0cc0c81508 | |
Stefan Kebekus | bc8fed96b0 | |
Stefan Kebekus | 0cb1914b18 |
|
@ -7,8 +7,7 @@ theorem harmonic_meanValue
|
||||||
(ρ R : ℝ)
|
(ρ R : ℝ)
|
||||||
(hR : 0 < R)
|
(hR : 0 < R)
|
||||||
(hρ : R < ρ)
|
(hρ : R < ρ)
|
||||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x) :
|
||||||
:
|
|
||||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||||
:= by
|
:= by
|
||||||
|
|
||||||
|
|
|
@ -18,7 +18,7 @@ lemma xx
|
||||||
let A := hf z hz
|
let A := hf z hz
|
||||||
let B := A.order
|
let B := A.order
|
||||||
|
|
||||||
exact A.order
|
exact (A.order : ⊤)
|
||||||
else
|
else
|
||||||
exact 0
|
exact 0
|
||||||
|
|
||||||
|
|
|
@ -1,54 +0,0 @@
|
||||||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
|
||||||
|
|
||||||
theorem intervalIntegral.intervalIntegrable_log'
|
|
||||||
{a : ℝ}
|
|
||||||
{b : ℝ}
|
|
||||||
{μ : MeasureTheory.Measure ℝ}
|
|
||||||
[MeasureTheory.IsLocallyFiniteMeasure μ]
|
|
||||||
(ha : 0 < a) :
|
|
||||||
IntervalIntegrable Real.log μ 0 a
|
|
||||||
:= by
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
theorem integral_log₀
|
|
||||||
{b : ℝ}
|
|
||||||
(hb : 0 < b) :
|
|
||||||
∫ (x : ℝ) in (0)..b, Real.log x = b * (Real.log b - 1) := by
|
|
||||||
apply?
|
|
||||||
exact integral_log h
|
|
||||||
|
|
||||||
|
|
||||||
open Real Nat Set Finset
|
|
||||||
|
|
||||||
open scoped Real Interval
|
|
||||||
|
|
||||||
--variable {a b : ℝ} (n : ℕ)
|
|
||||||
|
|
||||||
namespace intervalIntegral
|
|
||||||
|
|
||||||
--open MeasureTheory
|
|
||||||
|
|
||||||
--variable {f : ℝ → ℝ} {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ] (c d : ℝ)
|
|
||||||
|
|
||||||
#check integral_mul_deriv_eq_deriv_mul
|
|
||||||
|
|
||||||
theorem integral_log₁
|
|
||||||
(h : (0 : ℝ) ∉ [[a, b]]) :
|
|
||||||
∫ x in a..b, log x = b * log b - a * log a - b + a := by
|
|
||||||
|
|
||||||
have h' : ∀ x ∈ [[a, b]], x ≠ 0 :=
|
|
||||||
fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
|
|
||||||
have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 :=
|
|
||||||
fun x hx => mul_inv_cancel (h' x hx)
|
|
||||||
|
|
||||||
let A := fun x hx => hasDerivAt_log (h' x hx)
|
|
||||||
|
|
||||||
convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x)
|
|
||||||
|
|
||||||
convert integral_mul_deriv_eq_deriv_mul A
|
|
||||||
(fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <|
|
|
||||||
subset_compl_singleton_iff.mpr h).intervalIntegrable
|
|
||||||
continuousOn_const.intervalIntegrable using 1 <;>
|
|
||||||
|
|
||||||
simp [integral_congr heq, mul_comm, ← sub_add]
|
|
|
@ -0,0 +1,162 @@
|
||||||
|
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||||
|
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
|
||||||
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
|
import Mathlib.MeasureTheory.Measure.Restrict
|
||||||
|
|
||||||
|
open scoped Interval Topology
|
||||||
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
-- The following theorem was suggested by Gareth Ma on Zulip
|
||||||
|
|
||||||
|
example : IntervalIntegrable (log ∘ sin) volume 0 1 := by
|
||||||
|
|
||||||
|
have int_log : IntervalIntegrable log volume 0 1 := by sorry
|
||||||
|
|
||||||
|
apply IntervalIntegrable.mono_fun' (g := log)
|
||||||
|
|
||||||
|
exact int_log
|
||||||
|
|
||||||
|
-- AEStronglyMeasurable (log ∘ sin) (volume.restrict (Ι 0 1))
|
||||||
|
apply ContinuousOn.aestronglyMeasurable
|
||||||
|
apply ContinuousOn.comp (t := Ι 0 1)
|
||||||
|
apply ContinuousOn.mono (s := {0}ᶜ)
|
||||||
|
exact continuousOn_log
|
||||||
|
intro x hx
|
||||||
|
by_contra contra
|
||||||
|
simp at contra
|
||||||
|
rw [contra] at hx
|
||||||
|
rw [Set.left_mem_uIoc] at hx
|
||||||
|
linarith
|
||||||
|
exact continuousOn_sin
|
||||||
|
--
|
||||||
|
rw [Set.uIoc_of_le (zero_le_one' ℝ)]
|
||||||
|
exact fun x hx ↦ ⟨sin_pos_of_pos_of_le_one hx.1 hx.2, sin_le_one x⟩
|
||||||
|
--
|
||||||
|
exact measurableSet_uIoc
|
||||||
|
--
|
||||||
|
|
||||||
|
have : ∀ x ∈ (Ι 0 1), ‖(log ∘ sin) x‖ ≤ log x := by sorry
|
||||||
|
dsimp [EventuallyLE]
|
||||||
|
rw [MeasureTheory.ae_restrict_iff]
|
||||||
|
apply MeasureTheory.ae_of_all
|
||||||
|
exact this
|
||||||
|
|
||||||
|
--intro x
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
simp
|
||||||
|
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem logInt
|
||||||
|
{t : ℝ}
|
||||||
|
(ht : 0 < t) :
|
||||||
|
∫ x in (0 : ℝ)..t, log x = t * log t - t := by
|
||||||
|
rw [← integral_add_adjacent_intervals (b := 1)]
|
||||||
|
trans (-1) + (t * log t - t + 1)
|
||||||
|
· congr
|
||||||
|
· -- ∫ x in 0..1, log x = -1, same proof as before
|
||||||
|
rw [integral_eq_sub_of_hasDerivAt_of_tendsto (f := fun x ↦ x * log x - x) (fa := 0) (fb := -1)]
|
||||||
|
· simp
|
||||||
|
· simp
|
||||||
|
· intro x hx
|
||||||
|
norm_num at hx
|
||||||
|
convert (hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x) using 1
|
||||||
|
norm_num
|
||||||
|
· rw [← neg_neg log]
|
||||||
|
apply IntervalIntegrable.neg
|
||||||
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||||
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||||
|
· intro x hx
|
||||||
|
norm_num at hx
|
||||||
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||||
|
norm_num
|
||||||
|
· intro x hx
|
||||||
|
norm_num at hx
|
||||||
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||||
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||||
|
· have := tendsto_log_mul_rpow_nhds_zero zero_lt_one
|
||||||
|
simp_rw [rpow_one, mul_comm] at this
|
||||||
|
-- tendsto_nhdsWithin_of_tendsto_nhds should be under Tendsto namespace
|
||||||
|
convert this.sub (tendsto_nhdsWithin_of_tendsto_nhds tendsto_id)
|
||||||
|
norm_num
|
||||||
|
· rw [(by simp : -1 = 1 * log 1 - 1)]
|
||||||
|
apply tendsto_nhdsWithin_of_tendsto_nhds
|
||||||
|
exact (continuousAt_id.mul (continuousAt_log one_ne_zero)).sub continuousAt_id
|
||||||
|
· -- ∫ x in 1..t, log x = t * log t + 1, just use integral_log_of_pos
|
||||||
|
rw [integral_log_of_pos zero_lt_one ht]
|
||||||
|
norm_num
|
||||||
|
· abel
|
||||||
|
· -- log is integrable on [[0, 1]]
|
||||||
|
rw [← neg_neg log]
|
||||||
|
apply IntervalIntegrable.neg
|
||||||
|
apply intervalIntegrable_deriv_of_nonneg (g := fun x ↦ -(x * log x - x))
|
||||||
|
· exact (continuous_mul_log.continuousOn.sub continuous_id.continuousOn).neg
|
||||||
|
· intro x hx
|
||||||
|
norm_num at hx
|
||||||
|
convert ((hasDerivAt_mul_log hx.left.ne.symm).sub (hasDerivAt_id x)).neg using 1
|
||||||
|
norm_num
|
||||||
|
· intro x hx
|
||||||
|
norm_num at hx
|
||||||
|
rw [Pi.neg_apply, Left.nonneg_neg_iff]
|
||||||
|
exact (log_nonpos_iff hx.left).mpr hx.right.le
|
||||||
|
· -- log is integrable on [[0, t]]
|
||||||
|
simp [Set.mem_uIcc, ht]
|
||||||
|
|
||||||
|
|
||||||
|
lemma int₁₁ : ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) = 0 := by
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma int₁ :
|
||||||
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
|
||||||
|
have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
||||||
|
dsimp [Complex.abs]
|
||||||
|
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
||||||
|
congr
|
||||||
|
calc Complex.normSq (circleMap 0 1 x - 1)
|
||||||
|
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
||||||
|
dsimp [circleMap]
|
||||||
|
rw [Complex.normSq_apply]
|
||||||
|
simp
|
||||||
|
_ = sin x ^ 2 + cos x ^ 2 + 1 - 2 * cos x := by
|
||||||
|
ring
|
||||||
|
_ = 2 - 2 * cos x := by
|
||||||
|
rw [sin_sq_add_cos_sq]
|
||||||
|
norm_num
|
||||||
|
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
||||||
|
rw [← mul_div_assoc]
|
||||||
|
congr; norm_num
|
||||||
|
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
||||||
|
rw [cos_two_mul]
|
||||||
|
ring
|
||||||
|
_ = 4 * sin (x / 2) ^ 2 := by
|
||||||
|
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
||||||
|
ring
|
||||||
|
simp_rw [this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
||||||
|
have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
|
||||||
|
nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
|
||||||
|
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
|
||||||
|
let f := fun y ↦ log (4 * sin y ^ 2)
|
||||||
|
have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
right
|
||||||
|
right
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.inv_mul_integral_comp_div 2]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
exact int₁₁
|
Loading…
Reference in New Issue