Compare commits
No commits in common. "3f2407241274c384abcd006b2f43ca1e487f4462" and "8bc84748a32b70216e806241def3f00388d4b709" have entirely different histories.
3f24072412
...
8bc84748a3
@ -159,26 +159,3 @@ theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
|||||||
apply MeromorphicAt.order_congr
|
apply MeromorphicAt.order_congr
|
||||||
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
|
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
|
||||||
· simp [hz]
|
· simp [hz]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
|
||||||
theorem StronglyMeromorphicOn.analyticOnNhd
|
|
||||||
{f : ℂ → ℂ}
|
|
||||||
{U : Set ℂ}
|
|
||||||
(h₁f : StronglyMeromorphicOn f U)
|
|
||||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
|
|
||||||
AnalyticOnNhd ℂ f U := by
|
|
||||||
|
|
||||||
apply StronglyMeromorphicOn.analytic
|
|
||||||
intro z hz
|
|
||||||
let A := h₂f z hz
|
|
||||||
unfold MeromorphicOn.divisor at A
|
|
||||||
simp [hz] at A
|
|
||||||
by_cases h : (h₁f z hz).meromorphicAt.order = ⊤
|
|
||||||
· rw [h]
|
|
||||||
simp
|
|
||||||
· rw [WithTop.le_untop'_iff] at A
|
|
||||||
tauto
|
|
||||||
tauto
|
|
||||||
assumption
|
|
||||||
|
@ -26,8 +26,8 @@ theorem StronglyMeromorphicOn.analytic
|
|||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(h₁f : StronglyMeromorphicOn f U)
|
(h₁f : StronglyMeromorphicOn f U)
|
||||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
|
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
|
||||||
AnalyticOnNhd ℂ f U := by
|
∀ z ∈ U, AnalyticAt ℂ f z := by
|
||||||
intro z hz
|
intro z hz
|
||||||
apply StronglyMeromorphicAt.analytic
|
apply StronglyMeromorphicAt.analytic
|
||||||
exact h₂f z hz
|
exact h₂f z hz
|
||||||
|
@ -324,7 +324,8 @@ theorem MeromorphicOn.decompose₃
|
|||||||
· apply AnalyticAt.analyticWithinAt
|
· apply AnalyticAt.analyticWithinAt
|
||||||
rw [analyticAt_of_mul_analytic]
|
rw [analyticAt_of_mul_analytic]
|
||||||
|
|
||||||
sorry
|
|
||||||
|
sorry
|
||||||
|
|
||||||
have h₂h : StronglyMeromorphicOn h U := by
|
have h₂h : StronglyMeromorphicOn h U := by
|
||||||
sorry
|
sorry
|
||||||
@ -382,8 +383,8 @@ theorem MeromorphicOn.decompose₃'
|
|||||||
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||||
intro z hz
|
intro z hz
|
||||||
apply stronglyMeromorphicOn_ratlPolynomial₃order
|
|
||||||
|
|
||||||
|
sorry
|
||||||
let g' := f * h₁
|
let g' := f * h₁
|
||||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||||
have h₂g' : h₁g'.divisor.toFun = 0 := by
|
have h₂g' : h₁g'.divisor.toFun = 0 := by
|
||||||
@ -393,26 +394,20 @@ theorem MeromorphicOn.decompose₃'
|
|||||||
simp
|
simp
|
||||||
|
|
||||||
let g := h₁g'.makeStronglyMeromorphicOn
|
let g := h₁g'.makeStronglyMeromorphicOn
|
||||||
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
|
have h₁g : StronglyMeromorphicOn g U := by
|
||||||
|
sorry
|
||||||
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
|
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
|
||||||
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
|
sorry
|
||||||
rw [h₂g']
|
have h₃g : AnalyticOn ℂ g U := by
|
||||||
have h₃g : AnalyticOnNhd ℂ g U := by
|
sorry
|
||||||
apply StronglyMeromorphicOn.analyticOnNhd
|
|
||||||
rw [h₂g]
|
|
||||||
simp
|
|
||||||
assumption
|
|
||||||
have h₄g : ∀ u : U, g u ≠ 0 := by
|
have h₄g : ∀ u : U, g u ≠ 0 := by
|
||||||
intro u
|
|
||||||
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
use g
|
use g
|
||||||
constructor
|
constructor
|
||||||
· exact StronglyMeromorphicOn.meromorphicOn h₁g
|
· exact StronglyMeromorphicOn.meromorphicOn h₁g
|
||||||
· constructor
|
· constructor
|
||||||
· exact AnalyticOnNhd.analyticOn h₃g
|
· exact h₃g
|
||||||
· constructor
|
· constructor
|
||||||
· exact h₄g
|
· exact h₄g
|
||||||
· sorry
|
· sorry
|
||||||
|
@ -63,13 +63,6 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
|||||||
apply analyticOnNhd_const
|
apply analyticOnNhd_const
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
|
||||||
(d : ℂ → ℤ)
|
|
||||||
(U : Set ℂ) :
|
|
||||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
|
||||||
intro z hz
|
|
||||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial)
|
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||||
{z : ℂ}
|
{z : ℂ}
|
||||||
@ -173,10 +166,7 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃order
|
|||||||
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
||||||
exact hd
|
exact hd
|
||||||
simp_rw [finprod_of_infinite_mulSupport this]
|
simp_rw [finprod_of_infinite_mulSupport this]
|
||||||
have : AnalyticAt ℂ (1 : ℂ → ℂ) z := by exact analyticAt_const
|
sorry
|
||||||
rw [AnalyticAt.meromorphicAt_order this]
|
|
||||||
rw [this.order_eq_zero_iff.2 (by simp)]
|
|
||||||
simp
|
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||||
|
Loading…
x
Reference in New Issue
Block a user