Compare commits
No commits in common. "3f2407241274c384abcd006b2f43ca1e487f4462" and "8bc84748a32b70216e806241def3f00388d4b709" have entirely different histories.
3f24072412
...
8bc84748a3
@ -159,26 +159,3 @@ theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
||||
apply MeromorphicAt.order_congr
|
||||
exact EventuallyEq.symm (makeStronglyMeromorphicOn_changeDiscrete hf hz)
|
||||
· simp [hz]
|
||||
|
||||
|
||||
|
||||
/- Strongly MeromorphicOn of non-negative order is analytic -/
|
||||
theorem StronglyMeromorphicOn.analyticOnNhd
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ h₁f.meromorphicOn.divisor x) :
|
||||
AnalyticOnNhd ℂ f U := by
|
||||
|
||||
apply StronglyMeromorphicOn.analytic
|
||||
intro z hz
|
||||
let A := h₂f z hz
|
||||
unfold MeromorphicOn.divisor at A
|
||||
simp [hz] at A
|
||||
by_cases h : (h₁f z hz).meromorphicAt.order = ⊤
|
||||
· rw [h]
|
||||
simp
|
||||
· rw [WithTop.le_untop'_iff] at A
|
||||
tauto
|
||||
tauto
|
||||
assumption
|
||||
|
@ -26,8 +26,8 @@ theorem StronglyMeromorphicOn.analytic
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
(h₁f : StronglyMeromorphicOn f U)
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order) :
|
||||
AnalyticOnNhd ℂ f U := by
|
||||
(h₂f : ∀ x, (hx : x ∈ U) → 0 ≤ (h₁f x hx).meromorphicAt.order):
|
||||
∀ z ∈ U, AnalyticAt ℂ f z := by
|
||||
intro z hz
|
||||
apply StronglyMeromorphicAt.analytic
|
||||
exact h₂f z hz
|
||||
|
@ -324,7 +324,8 @@ theorem MeromorphicOn.decompose₃
|
||||
· apply AnalyticAt.analyticWithinAt
|
||||
rw [analyticAt_of_mul_analytic]
|
||||
|
||||
sorry
|
||||
|
||||
sorry
|
||||
|
||||
have h₂h : StronglyMeromorphicOn h U := by
|
||||
sorry
|
||||
@ -382,8 +383,8 @@ theorem MeromorphicOn.decompose₃'
|
||||
exact (StronglyMeromorphicOn.meromorphicOn h₁f).divisor.supportInU
|
||||
have h₃h₁ : ∀ (z : ℂ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ ⊤ := by
|
||||
intro z hz
|
||||
apply stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
|
||||
sorry
|
||||
let g' := f * h₁
|
||||
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
|
||||
have h₂g' : h₁g'.divisor.toFun = 0 := by
|
||||
@ -393,26 +394,20 @@ theorem MeromorphicOn.decompose₃'
|
||||
simp
|
||||
|
||||
let g := h₁g'.makeStronglyMeromorphicOn
|
||||
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
|
||||
have h₁g : StronglyMeromorphicOn g U := by
|
||||
sorry
|
||||
have h₂g : h₁g.meromorphicOn.divisor.toFun = 0 := by
|
||||
rw [← MeromorphicOn.divisor_of_makeStronglyMeromorphicOn]
|
||||
rw [h₂g']
|
||||
have h₃g : AnalyticOnNhd ℂ g U := by
|
||||
apply StronglyMeromorphicOn.analyticOnNhd
|
||||
rw [h₂g]
|
||||
simp
|
||||
assumption
|
||||
sorry
|
||||
have h₃g : AnalyticOn ℂ g U := by
|
||||
sorry
|
||||
have h₄g : ∀ u : U, g u ≠ 0 := by
|
||||
intro u
|
||||
rw [← (h₁g u.1 u.2).order_eq_zero_iff]
|
||||
|
||||
sorry
|
||||
|
||||
use g
|
||||
constructor
|
||||
· exact StronglyMeromorphicOn.meromorphicOn h₁g
|
||||
· constructor
|
||||
· exact AnalyticOnNhd.analyticOn h₃g
|
||||
· exact h₃g
|
||||
· constructor
|
||||
· exact h₄g
|
||||
· sorry
|
||||
|
@ -63,13 +63,6 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃
|
||||
apply analyticOnNhd_const
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_ratlPolynomial₃U
|
||||
(d : ℂ → ℤ)
|
||||
(U : Set ℂ) :
|
||||
StronglyMeromorphicOn (∏ᶠ u, fun z ↦ (z - u) ^ d u) U := by
|
||||
intro z hz
|
||||
exact stronglyMeromorphicOn_ratlPolynomial₃ d z (trivial)
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial₁
|
||||
{z : ℂ}
|
||||
@ -173,10 +166,7 @@ theorem stronglyMeromorphicOn_ratlPolynomial₃order
|
||||
have : (Function.mulSupport fun u z => (z - u) ^ d u).Infinite := by
|
||||
exact hd
|
||||
simp_rw [finprod_of_infinite_mulSupport this]
|
||||
have : AnalyticAt ℂ (1 : ℂ → ℂ) z := by exact analyticAt_const
|
||||
rw [AnalyticAt.meromorphicAt_order this]
|
||||
rw [this.order_eq_zero_iff.2 (by simp)]
|
||||
simp
|
||||
sorry
|
||||
|
||||
|
||||
theorem stronglyMeromorphicOn_divisor_ratlPolynomial
|
||||
|
Loading…
Reference in New Issue
Block a user