Compare commits
2 Commits
17705601c2
...
da859defb1
Author | SHA1 | Date |
---|---|---|
Stefan Kebekus | da859defb1 | |
Stefan Kebekus | 6ab6e6e6a9 |
|
@ -1,47 +1,103 @@
|
|||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
|
||||
lemma l₀
|
||||
{x₁ x₂ : ℝ} :
|
||||
(circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
|
||||
lemma l₀ {x₁ x₂ : ℝ} : (circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
|
||||
dsimp [circleMap]
|
||||
simp
|
||||
rw [add_mul, Complex.exp_add]
|
||||
|
||||
lemma l₁ {x : ℝ} : ‖circleMap 0 1 x‖ = 1 := by
|
||||
rw [Complex.norm_eq_abs, abs_circleMap_zero]
|
||||
simp
|
||||
|
||||
lemma l₂ {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
|
||||
calc ‖(circleMap 0 1 x) - a‖
|
||||
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by
|
||||
exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
|
||||
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
|
||||
rw [l₁]
|
||||
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
|
||||
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
|
||||
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
|
||||
rw [mul_sub]
|
||||
_ = ‖(circleMap 0 1 0) - (circleMap 0 1 (-x)) * a‖ := by
|
||||
rw [l₀]
|
||||
simp
|
||||
_ = ‖1 - (circleMap 0 1 (-x)) * a‖ := by
|
||||
congr
|
||||
dsimp [circleMap]
|
||||
simp
|
||||
|
||||
lemma int₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1) :
|
||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||
|
||||
by_cases h₁a : a = 0
|
||||
· -- case: a = 0
|
||||
rw [h₁a]
|
||||
simp
|
||||
|
||||
have {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖(circleMap 0 1 x) - a‖ := by
|
||||
calc ‖(circleMap 0 1 x) - a‖
|
||||
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
|
||||
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
|
||||
have : ‖(circleMap 0 1 (-x))‖ = 1 := by
|
||||
rw [Complex.norm_eq_abs, abs_circleMap_zero]
|
||||
simp
|
||||
rw [this]
|
||||
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
|
||||
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
|
||||
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
|
||||
rw [mul_sub]
|
||||
|
||||
_ =
|
||||
sorry
|
||||
|
||||
-- case: a ≠ 0
|
||||
simp_rw [l₂]
|
||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [← this]
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_neg ((fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖))]
|
||||
|
||||
let f₁ := fun w ↦ Real.log ‖1 - circleMap 0 1 w * a‖
|
||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 x * a‖ = f₁ (x + 2 * Real.pi) := by
|
||||
dsimp [f₁]
|
||||
congr 4
|
||||
let A := periodic_circleMap 0 1 x
|
||||
simp at A
|
||||
exact id (Eq.symm A)
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [this]
|
||||
rw [intervalIntegral.integral_comp_add_right f₁ (2 * Real.pi)]
|
||||
simp
|
||||
dsimp [f₁]
|
||||
|
||||
have hf : ∀ x ∈ Metric.ball 0 2, HarmonicAt F x := by sorry
|
||||
let ρ := ‖a‖⁻¹
|
||||
have hρ : 1 < ρ := by
|
||||
apply one_lt_inv_iff.mpr
|
||||
constructor
|
||||
· exact norm_pos_iff'.mpr h₁a
|
||||
· exact mem_ball_zero_iff.mp ha
|
||||
|
||||
sorry
|
||||
let F := fun z ↦ Real.log ‖1 - z * a‖
|
||||
|
||||
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
|
||||
intro x hx
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply Differentiable.holomorphicAt
|
||||
fun_prop
|
||||
apply sub_ne_zero_of_ne
|
||||
by_contra h
|
||||
have : ‖x * a‖ < 1 := by
|
||||
calc ‖x * a‖
|
||||
_ = ‖x‖ * ‖a‖ := by exact NormedField.norm_mul' x a
|
||||
_ < ρ * ‖a‖ := by
|
||||
apply (mul_lt_mul_right _).2
|
||||
exact mem_ball_zero_iff.mp hx
|
||||
exact norm_pos_iff'.mpr h₁a
|
||||
_ = 1 := by
|
||||
dsimp [ρ]
|
||||
apply inv_mul_cancel
|
||||
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
|
||||
rw [← h] at this
|
||||
simp at this
|
||||
|
||||
let A := harmonic_meanValue ρ 1 Real.zero_lt_one hρ hf
|
||||
dsimp [F] at A
|
||||
simp at A
|
||||
exact A
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
|
|
Loading…
Reference in New Issue