Update holomorphic.primitive.lean
This commit is contained in:
parent
0f6c905f60
commit
fcbdd1a2c2
|
@ -131,3 +131,67 @@ theorem integral_divergence₅
|
||||||
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
|
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
|
||||||
simp at B
|
simp at B
|
||||||
exact B
|
exact B
|
||||||
|
|
||||||
|
|
||||||
|
noncomputable def primitive
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||||
|
ℂ → (ℂ → E) → (ℂ → E) := by
|
||||||
|
intro z₀
|
||||||
|
intro f
|
||||||
|
exact fun z ↦ (∫ (x : ℝ) in z₀.re..z.re, f ⟨x, z₀.im⟩) + Complex.I • ∫ (x : ℝ) in z₀.im..z.im, f ⟨z.re, x⟩
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_zeroAtBasepoint
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E)
|
||||||
|
(z₀ : ℂ) :
|
||||||
|
(primitive z₀ f) z₀ = 0 := by
|
||||||
|
unfold primitive
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_lem1
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] [IsScalarTower ℝ ℂ E]
|
||||||
|
(v : E) :
|
||||||
|
HasDerivAt (primitive 0 (fun z ↦ v)) v 0 := by
|
||||||
|
unfold primitive
|
||||||
|
simp
|
||||||
|
|
||||||
|
have : (fun (z : ℂ) => z.re • v + Complex.I • z.im • v) = (fun (z : ℂ) => z • v) := by
|
||||||
|
funext z
|
||||||
|
rw [smul_comm]
|
||||||
|
rw [← smul_assoc]
|
||||||
|
simp
|
||||||
|
have : z.re • v = (z.re : ℂ) • v := by exact rfl
|
||||||
|
rw [this, ← add_smul]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
|
||||||
|
apply HasDerivAt.smul_const
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_fderivAtBasepoint
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E) :
|
||||||
|
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||||
|
unfold primitive
|
||||||
|
simp
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_additivity
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E)
|
||||||
|
(hf : Differentiable ℂ f)
|
||||||
|
(z₀ z₁ : ℂ) :
|
||||||
|
(primitive z₁ f) = (primitive z₀ f) - (fun z ↦ primitive z₀ f z₁) := by
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue