Update holomorphic.primitive.lean

This commit is contained in:
Stefan Kebekus
2024-06-14 16:07:58 +02:00
parent 0f6c905f60
commit fcbdd1a2c2

View File

@@ -131,3 +131,67 @@ theorem integral_divergence₅
rw [intervalIntegral.integral_symm lowerLeft.im upperRight.im] at B
simp at B
exact B
noncomputable def primitive
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
( E) ( E) := by
intro z₀
intro f
exact fun z ( (x : ) in z₀.re..z.re, f x, z₀.im) + Complex.I (x : ) in z₀.im..z.im, f z.re, x
theorem primitive_zeroAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : E)
(z₀ : ) :
(primitive z₀ f) z₀ = 0 := by
unfold primitive
simp
theorem primitive_lem1
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] [IsScalarTower E]
(v : E) :
HasDerivAt (primitive 0 (fun z v)) v 0 := by
unfold primitive
simp
have : (fun (z : ) => z.re v + Complex.I z.im v) = (fun (z : ) => z v) := by
funext z
rw [smul_comm]
rw [ smul_assoc]
simp
have : z.re v = (z.re : ) v := by exact rfl
rw [this, add_smul]
simp
rw [this]
apply HasDerivAt.smul_const
sorry
theorem primitive_fderivAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : E) :
HasDerivAt (primitive 0 f) (f 0) 0 := by
unfold primitive
simp
sorry
theorem primitive_additivity
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
(f : E)
(hf : Differentiable f)
(z₀ z₁ : ) :
(primitive z₁ f) = (primitive z₀ f) - (fun z primitive z₀ f z₁) := by
sorry