Update analyticOn_zeroSet.lean
This commit is contained in:
parent
cd58c18a78
commit
f732c82f92
|
@ -309,15 +309,7 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||
|
||||
let ι : U → ℂ := Subtype.val
|
||||
|
||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||
|
||||
have : A₁.Finite := by
|
||||
apply Set.Finite.preimage
|
||||
exact Set.injOn_subtype_val
|
||||
exact finiteZeros h₁U h₂U h₁f h₂f
|
||||
let A := this.toFinset
|
||||
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||
|
||||
let n : ℂ → ℕ := by
|
||||
intro z
|
||||
|
@ -354,14 +346,10 @@ theorem AnalyticOnCompact.eliminateZeros
|
|||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||
· have : f z ≠ 0 := by
|
||||
by_contra C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
|
||||
dsimp [A₁, ι]
|
||||
simp
|
||||
exact C
|
||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||
dsimp [A]
|
||||
simp
|
||||
exact this
|
||||
exact C
|
||||
tauto
|
||||
rw [inter z] at this
|
||||
exact right_ne_zero_of_smul this
|
||||
|
|
Loading…
Reference in New Issue