Update analyticOn_zeroSet.lean
This commit is contained in:
parent
cd58c18a78
commit
f732c82f92
|
@ -309,15 +309,7 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
∃ (g : ℂ → ℂ) (A : Finset U), AnalyticOn ℂ g U ∧ (∀ z ∈ U, g z ≠ 0) ∧ ∀ z, f z = (∏ a ∈ A, (z - a) ^ (h₁f a a.2).order.toNat) • g z := by
|
||||||
|
|
||||||
let ι : U → ℂ := Subtype.val
|
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
|
||||||
|
|
||||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
|
||||||
|
|
||||||
have : A₁.Finite := by
|
|
||||||
apply Set.Finite.preimage
|
|
||||||
exact Set.injOn_subtype_val
|
|
||||||
exact finiteZeros h₁U h₂U h₁f h₂f
|
|
||||||
let A := this.toFinset
|
|
||||||
|
|
||||||
let n : ℂ → ℕ := by
|
let n : ℂ → ℕ := by
|
||||||
intro z
|
intro z
|
||||||
|
@ -354,14 +346,10 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||||
· exact h₂g ⟨z, h₁z⟩ h₂z
|
· exact h₂g ⟨z, h₁z⟩ h₂z
|
||||||
· have : f z ≠ 0 := by
|
· have : f z ≠ 0 := by
|
||||||
by_contra C
|
by_contra C
|
||||||
have : ⟨z, h₁z⟩ ∈ ↑A₁ := by
|
|
||||||
dsimp [A₁, ι]
|
|
||||||
simp
|
|
||||||
exact C
|
|
||||||
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
have : ⟨z, h₁z⟩ ∈ ↑A.toSet := by
|
||||||
dsimp [A]
|
dsimp [A]
|
||||||
simp
|
simp
|
||||||
exact this
|
exact C
|
||||||
tauto
|
tauto
|
||||||
rw [inter z] at this
|
rw [inter z] at this
|
||||||
exact right_ne_zero_of_smul this
|
exact right_ne_zero_of_smul this
|
||||||
|
|
Loading…
Reference in New Issue