Working…
This commit is contained in:
parent
25d0e2086a
commit
f65785b62b
@ -100,3 +100,23 @@ theorem MeromorphicOn.divisor_def₂
|
|||||||
rw [WithTop.untop'_eq_iff]
|
rw [WithTop.untop'_eq_iff]
|
||||||
left
|
left
|
||||||
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
exact Eq.symm (WithTop.coe_untop (hf z hz).order h₂f)
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.divisor_mul
|
||||||
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(h₁f₁ : MeromorphicOn f₁ U)
|
||||||
|
(h₂f₁ : ∀ z, (hz : z ∈ U) → (h₁f₁ z hz).order ≠ ⊤)
|
||||||
|
(h₁f₂ : MeromorphicOn f₂ U)
|
||||||
|
(h₂f₂ : ∀ z, (hz : z ∈ U) → (h₁f₂ z hz).order ≠ ⊤) :
|
||||||
|
(h₁f₁.mul h₁f₂).divisor.toFun = h₁f₁.divisor.toFun + h₁f₂.divisor.toFun := by
|
||||||
|
funext z
|
||||||
|
|
||||||
|
by_cases hz : z ∈ U
|
||||||
|
· simp [hz]
|
||||||
|
rw [MeromorphicOn.divisor_def₂ h₁f₁ hz (h₂f₁ z hz)]
|
||||||
|
rw [MeromorphicOn.divisor_def₂ h₁f₂ hz (h₂f₂ z hz)]
|
||||||
|
let A := MeromorphicAt.order_mul (h₁f₁ z hz) (h₁f₂ z hz)
|
||||||
|
sorry
|
||||||
|
· unfold MeromorphicOn.divisor
|
||||||
|
simp [hz]
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
|
import Mathlib.Data.Set.Finite
|
||||||
import Nevanlinna.analyticAt
|
import Nevanlinna.analyticAt
|
||||||
import Nevanlinna.divisor
|
import Nevanlinna.divisor
|
||||||
import Nevanlinna.meromorphicAt
|
import Nevanlinna.meromorphicAt
|
||||||
@ -325,16 +326,35 @@ theorem MeromorphicOn.decompose₃
|
|||||||
rw [A] at this
|
rw [A] at this
|
||||||
tauto
|
tauto
|
||||||
|
|
||||||
have h₄f : Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
have h₄f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
|
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
|
||||||
|
|
||||||
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
|
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
|
||||||
have : Finite P' := by
|
let P := (h₄f.preimage Set.injOn_subtype_val : Set.Finite P').toFinset
|
||||||
unfold P'
|
have hP : ∀ p ∈ P, (h₁f p p.2).meromorphicAt.order ≠ ⊤ := by
|
||||||
refine Finite.of_injective ?f ?H
|
intro p hp
|
||||||
simp
|
apply h₃f
|
||||||
apply Finite.of_injective
|
|
||||||
|
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := MeromorphicOn.decompose₂ h₁f (P := P) hP
|
||||||
|
let h := ∏ p ∈ P, fun z => (z - p.1) ^ h₁f.meromorphicOn.divisor p.1
|
||||||
|
have h₁h : MeromorphicOn h U := by
|
||||||
|
sorry
|
||||||
|
have h₂h : StronglyMeromorphicOn h U := by
|
||||||
|
sorry
|
||||||
|
have h₃h : h₁h.divisor = h₁f.meromorphicOn.divisor := by
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
||||||
sorry
|
use g
|
||||||
|
constructor
|
||||||
|
· exact h₁g
|
||||||
|
· constructor
|
||||||
|
· sorry
|
||||||
|
· constructor
|
||||||
|
· sorry
|
||||||
|
· conv =>
|
||||||
|
left
|
||||||
|
rw [h₄g]
|
||||||
|
congr
|
||||||
|
simp
|
||||||
|
sorry
|
||||||
|
Loading…
Reference in New Issue
Block a user