working
This commit is contained in:
parent
24bd4f9ffa
commit
f43674dedc
|
@ -280,3 +280,14 @@ theorem analyticAt_finprod
|
|||
exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a)
|
||||
· rw [finprod_of_infinite_mulSupport h₁f]
|
||||
exact analyticAt_const
|
||||
|
||||
|
||||
theorem AnalyticAt.zpow
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
{n : ℤ}
|
||||
(h₁f : AnalyticAt ℂ f z₀)
|
||||
(h₂f : f z₀ ≠ 0) :
|
||||
AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by
|
||||
|
||||
sorry
|
||||
|
|
|
@ -68,12 +68,13 @@ theorem MeromorphicOn.decompose
|
|||
· exact StronglyMeromorphicOn_of_makeStronglyMeromorphic h₁f z hz
|
||||
· right
|
||||
use h₁f.divisor z
|
||||
use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g
|
||||
use (∏ᶠ p : ({z}ᶜ : Set ℂ), (fun x ↦ (x - p.1) ^ h₁f.divisor p.1)) * g
|
||||
constructor
|
||||
· apply AnalyticAt.mul₁
|
||||
· apply analyticAt_finprod
|
||||
intro w
|
||||
|
||||
|
||||
sorry
|
||||
· apply (h₃g z hz).analytic
|
||||
rw [h₂g ⟨z, hz⟩]
|
||||
|
|
Loading…
Reference in New Issue