From f43674dedce5d8a7c257b578741c1ef8e80077ba Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Thu, 14 Nov 2024 06:49:15 +0100 Subject: [PATCH] working --- Nevanlinna/analyticAt.lean | 11 +++++++++++ Nevanlinna/meromorphicOn_decompose.lean | 3 ++- 2 files changed, 13 insertions(+), 1 deletion(-) diff --git a/Nevanlinna/analyticAt.lean b/Nevanlinna/analyticAt.lean index 22831aa..2b4ffc3 100644 --- a/Nevanlinna/analyticAt.lean +++ b/Nevanlinna/analyticAt.lean @@ -280,3 +280,14 @@ theorem analyticAt_finprod exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a) · rw [finprod_of_infinite_mulSupport h₁f] exact analyticAt_const + + +theorem AnalyticAt.zpow + {f : ℂ → ℂ} + {z₀ : ℂ} + {n : ℤ} + (h₁f : AnalyticAt ℂ f z₀) + (h₂f : f z₀ ≠ 0) : + AnalyticAt ℂ (fun x ↦ (f x) ^ n) z₀ := by + + sorry diff --git a/Nevanlinna/meromorphicOn_decompose.lean b/Nevanlinna/meromorphicOn_decompose.lean index b7a85d1..88666cf 100644 --- a/Nevanlinna/meromorphicOn_decompose.lean +++ b/Nevanlinna/meromorphicOn_decompose.lean @@ -68,12 +68,13 @@ theorem MeromorphicOn.decompose · exact StronglyMeromorphicOn_of_makeStronglyMeromorphic h₁f z hz · right use h₁f.divisor z - use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g + use (∏ᶠ p : ({z}ᶜ : Set ℂ), (fun x ↦ (x - p.1) ^ h₁f.divisor p.1)) * g constructor · apply AnalyticAt.mul₁ · apply analyticAt_finprod intro w + sorry · apply (h₃g z hz).analytic rw [h₂g ⟨z, hz⟩]