Fix compilation

This commit is contained in:
Stefan Kebekus 2024-07-29 11:22:47 +02:00
parent c785a85f26
commit f2988797b4
2 changed files with 20 additions and 18 deletions

View File

@ -0,0 +1,9 @@
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.InnerProductSpace.PiL2
/-
Here we would like to define differential operators, following EGA 4-1, §20.
This is work to be done in the future.
-/

View File

@ -96,13 +96,13 @@ theorem CauchyRiemann₄
simp
rw [← mul_one Complex.I]
rw [← smul_eq_mul]
rw [ContinuousLinearMap.map_smul_of_tower (fderiv f w) Complex.I 1]
conv =>
right
right
intro w
rw [DifferentiableAt.fderiv_restrictScalars (h w)]
funext w
simp
theorem MeasureTheory.integral2_divergence₃
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
@ -200,12 +200,12 @@ theorem integral_divergence₅
rw [this]
apply ContDiff.comp
exact contDiff_const_smul _
exact h₁f
exact h₁f
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
have {z : } : fderiv F z Complex.I = partialDeriv _ F z := by rfl
have {z : } : fderiv F z Complex.I = partialDeriv Complex.I F z := by rfl
conv at A in (fderiv F _) _ => rw [this]
have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv _ (-Complex.I • F) z := by rfl
have {z : } : fderiv (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl
conv at A in (fderiv (-Complex.I • F) _) _ => rw [this]
conv at A =>
left
@ -231,6 +231,7 @@ theorem integral_divergence₅
exact B
noncomputable def primitive
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] :
→ ( → E) → ( → E) := by
@ -291,26 +292,18 @@ theorem primitive_fderivAtBasepointZero
fun_prop
have t₂ {a b : } : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
apply Continuous.intervalIntegrable
apply Continuous.comp
exact hf
have : ((fun x => { re := a, im := x }) : ) = (fun x => { re := a, im := 0 } + { re := 0, im := x }) := by
apply Continuous.comp hf
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]
simp
rw [Complex.add_im]
simp
rw [this]
apply Continuous.add
fun_prop
have : (fun x => { re := 0, im := x } : ) = Complex.I • Complex.ofRealCLM := by
funext x
simp
have : (x : ) = {re := x, im := 0} := by rfl
rw [this]
rw [Complex.I_mul]
simp
continuity
fun_prop
have t₃ {a : } : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
apply Continuous.intervalIntegrable
@ -557,7 +550,7 @@ lemma integrability₂
apply Continuous.intervalIntegrable
apply Continuous.comp
exact Differentiable.continuous hf
have : ((fun x => { re := b, im := x }) : ) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
funext x
apply Complex.ext
rw [Complex.add_re]