diff --git a/Nevanlinna/diffOpGrothendieck.lean b/Nevanlinna/diffOpGrothendieck.lean new file mode 100644 index 0000000..c76f80c --- /dev/null +++ b/Nevanlinna/diffOpGrothendieck.lean @@ -0,0 +1,9 @@ +import Mathlib.Analysis.Calculus.ContDiff.Basic +import Mathlib.Analysis.InnerProductSpace.PiL2 + +/- + +Here we would like to define differential operators, following EGA 4-1, §20. +This is work to be done in the future. + +-/ \ No newline at end of file diff --git a/Nevanlinna/holomorphic.primitive.lean b/Nevanlinna/holomorphic.primitive.lean index c537d70..d7e3921 100644 --- a/Nevanlinna/holomorphic.primitive.lean +++ b/Nevanlinna/holomorphic.primitive.lean @@ -96,13 +96,13 @@ theorem CauchyRiemann₄ simp rw [← mul_one Complex.I] rw [← smul_eq_mul] - rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1] conv => right right intro w rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)] - + funext w + simp theorem MeasureTheory.integral2_divergence₃ {E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E] @@ -200,12 +200,12 @@ theorem integral_divergence₅ rw [this] apply ContDiff.comp exact contDiff_const_smul _ - exact h₁f + exact h₁f let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im - have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv _ F z := by rfl + have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv Complex.I F z := by rfl conv at A in (fderiv ℝ F _) _ => rw [this] - have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv _ (-Complex.I • F) z := by rfl + have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this] conv at A => left @@ -231,6 +231,7 @@ theorem integral_divergence₅ exact B + noncomputable def primitive {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] : ℂ → (ℂ → E) → (ℂ → E) := by @@ -291,26 +292,18 @@ theorem primitive_fderivAtBasepointZero fun_prop have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by apply Continuous.intervalIntegrable - apply Continuous.comp - exact hf - have : ((fun x => { re := a, im := x }) : ℝ → ℂ) = (fun x => { re := a, im := 0 } + { re := 0, im := x }) := by + apply Continuous.comp hf + have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by funext x apply Complex.ext rw [Complex.add_re] simp - rw [Complex.add_im] simp rw [this] apply Continuous.add - fun_prop - have : (fun x => { re := 0, im := x } : ℝ → ℂ) = Complex.I • Complex.ofRealCLM := by - funext x - simp - have : (x : ℂ) = {re := x, im := 0} := by rfl - rw [this] - rw [Complex.I_mul] - simp continuity + fun_prop + have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by apply Continuous.intervalIntegrable @@ -557,7 +550,7 @@ lemma integrability₂ apply Continuous.intervalIntegrable apply Continuous.comp exact Differentiable.continuous hf - have : ((fun x => { re := b, im := x }) : ℝ → ℂ) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by + have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by funext x apply Complex.ext rw [Complex.add_re]