Fix compilation
This commit is contained in:
parent
c785a85f26
commit
f2988797b4
|
@ -0,0 +1,9 @@
|
|||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
/-
|
||||
|
||||
Here we would like to define differential operators, following EGA 4-1, §20.
|
||||
This is work to be done in the future.
|
||||
|
||||
-/
|
|
@ -96,13 +96,13 @@ theorem CauchyRiemann₄
|
|||
simp
|
||||
rw [← mul_one Complex.I]
|
||||
rw [← smul_eq_mul]
|
||||
rw [ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f w) Complex.I 1]
|
||||
conv =>
|
||||
right
|
||||
right
|
||||
intro w
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (h w)]
|
||||
|
||||
funext w
|
||||
simp
|
||||
|
||||
theorem MeasureTheory.integral2_divergence₃
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℝ E] [CompleteSpace E]
|
||||
|
@ -203,9 +203,9 @@ theorem integral_divergence₅
|
|||
exact h₁f
|
||||
|
||||
let A := integral_divergence₄ (-Complex.I • F) F h₁g h₁f lowerLeft.re upperRight.im upperRight.re lowerLeft.im
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv _ F z := by rfl
|
||||
have {z : ℂ} : fderiv ℝ F z Complex.I = partialDeriv Complex.I F z := by rfl
|
||||
conv at A in (fderiv ℝ F _) _ => rw [this]
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv _ (-Complex.I • F) z := by rfl
|
||||
have {z : ℂ} : fderiv ℝ (-Complex.I • F) z 1 = partialDeriv 1 (-Complex.I • F) z := by rfl
|
||||
conv at A in (fderiv ℝ (-Complex.I • F) _) _ => rw [this]
|
||||
conv at A =>
|
||||
left
|
||||
|
@ -231,6 +231,7 @@ theorem integral_divergence₅
|
|||
exact B
|
||||
|
||||
|
||||
|
||||
noncomputable def primitive
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] :
|
||||
ℂ → (ℂ → E) → (ℂ → E) := by
|
||||
|
@ -291,26 +292,18 @@ theorem primitive_fderivAtBasepointZero
|
|||
fun_prop
|
||||
have t₂ {a b : ℝ} : IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by
|
||||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact hf
|
||||
have : ((fun x => { re := a, im := x }) : ℝ → ℂ) = (fun x => { re := a, im := 0 } + { re := 0, im := x }) := by
|
||||
apply Continuous.comp hf
|
||||
have : (Complex.mk a) = (fun x => Complex.I • Complex.ofRealCLM x + { re := a, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
simp
|
||||
rw [Complex.add_im]
|
||||
simp
|
||||
rw [this]
|
||||
apply Continuous.add
|
||||
fun_prop
|
||||
have : (fun x => { re := 0, im := x } : ℝ → ℂ) = Complex.I • Complex.ofRealCLM := by
|
||||
funext x
|
||||
simp
|
||||
have : (x : ℂ) = {re := x, im := 0} := by rfl
|
||||
rw [this]
|
||||
rw [Complex.I_mul]
|
||||
simp
|
||||
continuity
|
||||
fun_prop
|
||||
|
||||
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun _ => f 0) MeasureTheory.volume 0 a := by
|
||||
apply Continuous.intervalIntegrable
|
||||
|
@ -557,7 +550,7 @@ lemma integrability₂
|
|||
apply Continuous.intervalIntegrable
|
||||
apply Continuous.comp
|
||||
exact Differentiable.continuous hf
|
||||
have : ((fun x => { re := b, im := x }) : ℝ → ℂ) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
have : (Complex.mk b) = (fun x => Complex.I • Complex.ofRealCLM x + { re := b, im := 0 }) := by
|
||||
funext x
|
||||
apply Complex.ext
|
||||
rw [Complex.add_re]
|
||||
|
|
Loading…
Reference in New Issue