Update complexHarmonic.lean
This commit is contained in:
parent
b9a973d10d
commit
f239759275
|
@ -17,18 +17,6 @@ noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||||
def Harmonic (f : ℂ → ℝ) : Prop :=
|
def Harmonic (f : ℂ → ℝ) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
#check contDiff_iff_ftaylorSeries.2
|
|
||||||
|
|
||||||
lemma c2_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℂ 2 f := by
|
|
||||||
intro fHyp
|
|
||||||
exact Differentiable.contDiff fHyp
|
|
||||||
|
|
||||||
lemma c2R_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℝ 2 f := by
|
|
||||||
intro fHyp
|
|
||||||
let ZZ := c2_if_holomorphic f fHyp
|
|
||||||
apply ContDiff.restrict_scalars ℝ ZZ
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
||||||
|
@ -41,7 +29,7 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
· -- Complex.reCLM is two times real continuously differentiable
|
· -- Complex.reCLM is two times real continuously differentiable
|
||||||
exact ContinuousLinearMap.contDiff Complex.reCLM
|
exact ContinuousLinearMap.contDiff Complex.reCLM
|
||||||
· -- f is two times real continuously differentiable
|
· -- f is two times real continuously differentiable
|
||||||
exact c2R_if_holomorphic f h
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
· -- Laplace of f is zero
|
· -- Laplace of f is zero
|
||||||
intro z
|
intro z
|
||||||
|
|
Loading…
Reference in New Issue