Update complexHarmonic.lean
This commit is contained in:
parent
b9a973d10d
commit
f239759275
@ -17,18 +17,6 @@ noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||
def Harmonic (f : ℂ → ℝ) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
|
||||
#check contDiff_iff_ftaylorSeries.2
|
||||
|
||||
lemma c2_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℂ 2 f := by
|
||||
intro fHyp
|
||||
exact Differentiable.contDiff fHyp
|
||||
|
||||
lemma c2R_if_holomorphic (f : ℂ → ℂ) : Differentiable ℂ f → ContDiff ℝ 2 f := by
|
||||
intro fHyp
|
||||
let ZZ := c2_if_holomorphic f fHyp
|
||||
apply ContDiff.restrict_scalars ℝ ZZ
|
||||
|
||||
|
||||
|
||||
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
||||
@ -41,7 +29,7 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||
· -- Complex.reCLM is two times real continuously differentiable
|
||||
exact ContinuousLinearMap.contDiff Complex.reCLM
|
||||
· -- f is two times real continuously differentiable
|
||||
exact c2R_if_holomorphic f h
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
|
||||
· -- Laplace of f is zero
|
||||
intro z
|
||||
|
Loading…
Reference in New Issue
Block a user