Working…

This commit is contained in:
Stefan Kebekus
2024-09-10 14:21:08 +02:00
parent fa2e431f4c
commit ef7e1df191
2 changed files with 59 additions and 15 deletions

View File

@@ -50,3 +50,27 @@ theorem AnalyticAt.order_mul
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂
theorem AnalyticAt.order_eq_zero_iff
{f : }
{z₀ : }
(hf : AnalyticAt f z₀) :
hf.order = 0 f z₀ 0 := by
have : (0 : ENat) = (0 : Nat) := by rfl
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
constructor
· intro hz
obtain g, _, h₂g, h₃g := hz
simp at h₃g
rw [Filter.Eventually.self_of_nhds h₃g]
tauto
· intro hz
use f
constructor
· exact hf
· constructor
· exact hz
· simp

View File

@@ -97,6 +97,26 @@ theorem AnalyticOn.order_eq_nat_iff
exact h₁g z₀ z₀.2, h₂g, Filter.Eventually.of_forall h₃g
theorem AnalyticOn.support_of_order₁
{f : }
{U : Set }
(hf : AnalyticOn f U) :
Function.support hf.order = U.restrict f⁻¹' {0} := by
ext u
simp [AnalyticOn.order]
rw [not_iff_comm, (hf u u.2).order_eq_zero_iff]
theorem AnalyticOn.support_of_order₂
{f : }
{U : Set }
(h₁U : IsPreconnected U)
(h₁f : AnalyticOn f U)
(h₂f : u U, f u 0) :
Function.support (ENat.toNat h₁f.order) = U.restrict f⁻¹' {0} := by
sorry
theorem AnalyticOn.eliminateZeros
{f : }
{U : Set }
@@ -358,16 +378,11 @@ theorem AnalyticOnCompact.eliminateZeros₁
let A := (finiteZeros h₁U h₂U h₁f h₂f).toFinset
let n : := by
intro z
by_cases hz : z U
· exact (h₁f z hz).order.toNat
· exact 0
let n : U := fun z (h₁f z z.2).order.toNat
have hn : a A, (h₁f a a.2).order = n a := by
intro a _
dsimp [n]
simp
dsimp [n, AnalyticOn.order]
rw [eq_comm]
apply XX h₁U
exact h₂f
@@ -375,14 +390,9 @@ theorem AnalyticOnCompact.eliminateZeros₁
obtain g, h₁g, h₂g, h₃g := AnalyticOn.eliminateZeros (A := A) h₁f n hn
use g
have inter : (z : ), f z = ( a A, (z - a) ^ (h₁f.order a).toNat) g z := by
have inter : (z : ), f z = ( a A, (z - a) ^ (h₁f (a) a.property).order.toNat) g z := by
intro z
rw [h₃g z]
congr
funext a
congr
dsimp [n]
simp [a.2]
constructor
@@ -400,5 +410,15 @@ theorem AnalyticOnCompact.eliminateZeros₁
tauto
rw [inter z] at this
exact right_ne_zero_of_smul this
·
exact inter
· intro z
let φ : U := fun a (z - a) ^ (h₁f.order a).toNat
have : Function.mulSupport φ A := by
intro x hx
simp [φ] at hx
have : (h₁f.order x).toNat 0 := by
sorry
sorry
rw [finprod_eq_prod_of_mulSupport_subset φ ]
rw [inter z]
rfl