Working…
This commit is contained in:
parent
c7a3804b0c
commit
ee7f20c593
33
Nevanlinna/meromorphicOn_integrability.lean
Normal file
33
Nevanlinna/meromorphicOn_integrability.lean
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
|
import Nevanlinna.analyticAt
|
||||||
|
import Nevanlinna.divisor
|
||||||
|
import Nevanlinna.meromorphicAt
|
||||||
|
import Nevanlinna.meromorphicOn_divisor
|
||||||
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
|
import Nevanlinna.mathlibAddOn
|
||||||
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
|
|
||||||
|
|
||||||
|
open scoped Interval Topology
|
||||||
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
|
||||||
|
theorem integrability_congr_changeDiscrete
|
||||||
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin ⊤] f₂) :
|
||||||
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||||
|
intro hf₁
|
||||||
|
|
||||||
|
apply IntervalIntegrable.congr hf₁
|
||||||
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
|
use (circleMap 0 r)⁻¹' { z | f₁ z = f₂ z}
|
||||||
|
constructor
|
||||||
|
· apply Set.Countable.measure_zero
|
||||||
|
have : (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z})ᶜ = (circleMap 0 r ⁻¹' {z | f₁ z = f₂ z}ᶜ) := by
|
||||||
|
exact rfl
|
||||||
|
rw [this]
|
||||||
|
apply Set.Countable.preimage_circleMap
|
||||||
|
sorry
|
||||||
|
sorry
|
||||||
|
· sorry
|
@ -4,6 +4,22 @@ import Mathlib.Algebra.BigOperators.Finprod
|
|||||||
open Topology
|
open Topology
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.analyticOnCodiscreteWithin
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hf : MeromorphicOn f U) :
|
||||||
|
{ x | AnalyticAt ℂ f x } ∈ Filter.codiscreteWithin U := by
|
||||||
|
|
||||||
|
rw [mem_codiscreteWithin]
|
||||||
|
intro x hx
|
||||||
|
simp
|
||||||
|
rw [← Filter.eventually_mem_set]
|
||||||
|
apply Filter.Eventually.mono (hf x hx).eventually_analyticAt
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
/- Strongly MeromorphicOn -/
|
/- Strongly MeromorphicOn -/
|
||||||
def StronglyMeromorphicOn
|
def StronglyMeromorphicOn
|
||||||
(f : ℂ → ℂ)
|
(f : ℂ → ℂ)
|
||||||
@ -106,6 +122,25 @@ theorem makeStronglyMeromorphicOn_changeDiscrete'
|
|||||||
simp [hz₀]
|
simp [hz₀]
|
||||||
|
|
||||||
|
|
||||||
|
theorem makeStronglyMeromorphicOn_changeDiscrete''
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hf : MeromorphicOn f U) :
|
||||||
|
f =ᶠ[Filter.codiscreteWithin U] hf.makeStronglyMeromorphicOn := by
|
||||||
|
|
||||||
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
|
use { x | AnalyticAt ℂ f x }
|
||||||
|
constructor
|
||||||
|
· exact MeromorphicOn.analyticOnCodiscreteWithin hf
|
||||||
|
· intro x hx
|
||||||
|
simp at hx
|
||||||
|
rw [MeromorphicOn.makeStronglyMeromorphicOn]
|
||||||
|
by_cases h₁x : x ∈ U
|
||||||
|
· simp [h₁x]
|
||||||
|
rw [← StronglyMeromorphicAt.makeStronglyMeromorphic_id hx.stronglyMeromorphicAt]
|
||||||
|
· simp [h₁x]
|
||||||
|
|
||||||
|
|
||||||
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
Loading…
Reference in New Issue
Block a user