Update complexHarmonic.lean
This commit is contained in:
parent
f239759275
commit
ea3693ff24
|
@ -3,38 +3,74 @@ import Mathlib.Analysis.Complex.TaylorSeries
|
|||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Nevanlinna.cauchyRiemann
|
||||
|
||||
noncomputable def Complex.laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||
intro f
|
||||
let f₁ := fun x ↦ lineDeriv ℝ f x 1
|
||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1
|
||||
let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I
|
||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I
|
||||
exact f₁₁ + f₂₂
|
||||
|
||||
let fx := fun w ↦ fderiv ℝ f w 1
|
||||
let fxx := fun z ↦ fderiv ℝ fx z 1
|
||||
let fy := fun w ↦ fderiv ℝ f w Complex.I
|
||||
let fyy := fun z ↦ fderiv ℝ fy z Complex.I
|
||||
exact fun z ↦ (fxx z) + (fyy z)
|
||||
|
||||
|
||||
def Harmonic (f : ℂ → ℝ) : Prop :=
|
||||
def Harmonic (f : ℂ → ℂ) : Prop :=
|
||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||
|
||||
|
||||
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||
Differentiable ℂ f → Harmonic (Complex.reCLM ∘ f) := by
|
||||
Differentiable ℂ f → Harmonic f := by
|
||||
|
||||
intro h
|
||||
|
||||
constructor
|
||||
· -- Complex.reCLM ∘ f is two times real continuously differentiable
|
||||
apply ContDiff.comp
|
||||
· -- Complex.reCLM is two times real continuously differentiable
|
||||
exact ContinuousLinearMap.contDiff Complex.reCLM
|
||||
· -- f is two times real continuously differentiable
|
||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||
|
||||
· -- Laplace of f is zero
|
||||
intro z
|
||||
unfold Complex.laplace
|
||||
simp
|
||||
let ZZ := (CauchyRiemann₃ (h z)).left
|
||||
|
||||
conv =>
|
||||
left
|
||||
right
|
||||
arg 1
|
||||
arg 2
|
||||
intro z
|
||||
rw [CauchyRiemann₁ (h z)]
|
||||
|
||||
have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by
|
||||
intro z
|
||||
|
||||
sorry
|
||||
|
||||
have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x
|
||||
= Complex.I * ((fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) x) := by
|
||||
intro x
|
||||
rw [fderiv_const_mul]
|
||||
simp
|
||||
exact t₀ z
|
||||
rw [t₁]
|
||||
|
||||
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
||||
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
||||
sorry
|
||||
rw [t₂]
|
||||
|
||||
conv =>
|
||||
left
|
||||
right
|
||||
arg 2
|
||||
arg 1
|
||||
arg 2
|
||||
intro z
|
||||
rw [CauchyRiemann₁ (h z)]
|
||||
|
||||
rw [t₁]
|
||||
|
||||
rw [← mul_assoc]
|
||||
simp
|
||||
|
Loading…
Reference in New Issue