Update stronglyMeromorphicOn_eliminate.lean
This commit is contained in:
parent
1c02007e1e
commit
e80aebfe38
@ -537,15 +537,53 @@ theorem MeromorphicOn.decompose_log
|
|||||||
congr
|
congr
|
||||||
ext u
|
ext u
|
||||||
rw [log_zpow]
|
rw [log_zpow]
|
||||||
|
--
|
||||||
intro x hx
|
intro x hx
|
||||||
simp at hx
|
simp at hx
|
||||||
simp
|
have h₁x : x ∈ U := by
|
||||||
|
exact h₁f.meromorphicOn.divisor.supportInU hx
|
||||||
|
|
||||||
apply zpow_ne_zero
|
apply zpow_ne_zero
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
by_contra hCon
|
||||||
|
rw [← hCon] at hx
|
||||||
|
unfold MeromorphicOn.divisor at hx
|
||||||
|
rw [hCon] at hz
|
||||||
simp at hz
|
simp at hz
|
||||||
contrapose
|
let A := (h₁f x h₁x).order_eq_zero_iff
|
||||||
|
let B := A.2 hz
|
||||||
|
simp [B] at hx
|
||||||
|
obtain ⟨a, b⟩ := hx
|
||||||
|
let c := b.1
|
||||||
|
simp_rw [hCon] at c
|
||||||
|
tauto
|
||||||
|
--
|
||||||
|
simp at hz
|
||||||
|
by_contra hCon
|
||||||
|
simp at hCon
|
||||||
|
rw [h₄g] at hz
|
||||||
|
simp at hz
|
||||||
|
tauto
|
||||||
|
--
|
||||||
|
rw [Finset.prod_ne_zero_iff]
|
||||||
|
intro x hx
|
||||||
|
simp at hx
|
||||||
|
have h₁x : x ∈ U := by
|
||||||
|
exact h₁f.meromorphicOn.divisor.supportInU hx
|
||||||
|
|
||||||
|
apply zpow_ne_zero
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
by_contra hCon
|
||||||
repeat
|
rw [← hCon] at hx
|
||||||
sorry
|
unfold MeromorphicOn.divisor at hx
|
||||||
|
rw [hCon] at hz
|
||||||
|
simp at hz
|
||||||
|
let A := (h₁f x h₁x).order_eq_zero_iff
|
||||||
|
let B := A.2 hz
|
||||||
|
simp [B] at hx
|
||||||
|
obtain ⟨a, b⟩ := hx
|
||||||
|
let c := b.1
|
||||||
|
simp_rw [hCon] at c
|
||||||
|
tauto
|
||||||
|
Loading…
Reference in New Issue
Block a user