Working…
This commit is contained in:
parent
da859defb1
commit
e6f60971a8
|
@ -100,6 +100,13 @@ lemma int₀
|
|||
exact A
|
||||
|
||||
|
||||
lemma int₁ :
|
||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||
dsimp [circleMap]
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
(h₁f : Differentiable ℂ f)
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||
|
||||
theorem intervalIntegral.intervalIntegrable_log'
|
||||
{a : ℝ}
|
||||
{b : ℝ}
|
||||
{μ : MeasureTheory.Measure ℝ}
|
||||
[MeasureTheory.IsLocallyFiniteMeasure μ]
|
||||
(ha : 0 < a) :
|
||||
IntervalIntegrable Real.log μ 0 a
|
||||
:= by
|
||||
|
||||
sorry
|
||||
|
||||
theorem integral_log₀
|
||||
{b : ℝ}
|
||||
(hb : 0 < b) :
|
||||
∫ (x : ℝ) in (0)..b, Real.log x = b * (Real.log b - 1) := by
|
||||
apply?
|
||||
exact integral_log h
|
||||
|
||||
|
||||
open Real Nat Set Finset
|
||||
|
||||
open scoped Real Interval
|
||||
|
||||
--variable {a b : ℝ} (n : ℕ)
|
||||
|
||||
namespace intervalIntegral
|
||||
|
||||
--open MeasureTheory
|
||||
|
||||
--variable {f : ℝ → ℝ} {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ] (c d : ℝ)
|
||||
|
||||
#check integral_mul_deriv_eq_deriv_mul
|
||||
|
||||
theorem integral_log₁
|
||||
(h : (0 : ℝ) ∉ [[a, b]]) :
|
||||
∫ x in a..b, log x = b * log b - a * log a - b + a := by
|
||||
|
||||
have h' : ∀ x ∈ [[a, b]], x ≠ 0 :=
|
||||
fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
|
||||
have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 :=
|
||||
fun x hx => mul_inv_cancel (h' x hx)
|
||||
|
||||
let A := fun x hx => hasDerivAt_log (h' x hx)
|
||||
|
||||
convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x)
|
||||
|
||||
convert integral_mul_deriv_eq_deriv_mul A
|
||||
(fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <|
|
||||
subset_compl_singleton_iff.mpr h).intervalIntegrable
|
||||
continuousOn_const.intervalIntegrable using 1 <;>
|
||||
|
||||
simp [integral_congr heq, mul_comm, ← sub_add]
|
Loading…
Reference in New Issue