Working…

This commit is contained in:
Stefan Kebekus 2024-08-12 13:01:35 +02:00
parent da859defb1
commit e6f60971a8
3 changed files with 61 additions and 0 deletions

View File

@ -100,6 +100,13 @@ lemma int₀
exact A
lemma int₁ :
∫ (x : ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - 1‖ = 0 := by
dsimp [circleMap]
sorry
theorem jensen_case_R_eq_one
(f : )
(h₁f : Differentiable f)

View File

@ -0,0 +1,54 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
theorem intervalIntegral.intervalIntegrable_log'
{a : }
{b : }
{μ : MeasureTheory.Measure }
[MeasureTheory.IsLocallyFiniteMeasure μ]
(ha : 0 < a) :
IntervalIntegrable Real.log μ 0 a
:= by
sorry
theorem integral_log₀
{b : }
(hb : 0 < b) :
∫ (x : ) in (0)..b, Real.log x = b * (Real.log b - 1) := by
apply?
exact integral_log h
open Real Nat Set Finset
open scoped Real Interval
--variable {a b : } (n : )
namespace intervalIntegral
--open MeasureTheory
--variable {f : } {μ ν : Measure } [IsLocallyFiniteMeasure μ] (c d : )
#check integral_mul_deriv_eq_deriv_mul
theorem integral_log₁
(h : (0 : ) ∉ [[a, b]]) :
∫ x in a..b, log x = b * log b - a * log a - b + a := by
have h' : ∀ x ∈ [[a, b]], x ≠ 0 :=
fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h
have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 :=
fun x hx => mul_inv_cancel (h' x hx)
let A := fun x hx => hasDerivAt_log (h' x hx)
convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x)
convert integral_mul_deriv_eq_deriv_mul A
(fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <|
subset_compl_singleton_iff.mpr h).intervalIntegrable
continuousOn_const.intervalIntegrable using 1 <;>
simp [integral_congr heq, mul_comm, ← sub_add]