From e6f60971a83b0855d8dc4171571cfdbfbf66b951 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Mon, 12 Aug 2024 13:01:35 +0200 Subject: [PATCH] =?UTF-8?q?Working=E2=80=A6?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Nevanlinna/holomorphic_JensenFormula.lean | 7 +++ Nevanlinna/holomorphic_JensenFormula2.lean | 0 Nevanlinna/specialFunctions.lean | 54 ++++++++++++++++++++++ 3 files changed, 61 insertions(+) create mode 100644 Nevanlinna/holomorphic_JensenFormula2.lean create mode 100644 Nevanlinna/specialFunctions.lean diff --git a/Nevanlinna/holomorphic_JensenFormula.lean b/Nevanlinna/holomorphic_JensenFormula.lean index ca56f49..9aaf160 100644 --- a/Nevanlinna/holomorphic_JensenFormula.lean +++ b/Nevanlinna/holomorphic_JensenFormula.lean @@ -100,6 +100,13 @@ lemma int₀ exact A +lemma int₁ : + ∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - 1‖ = 0 := by + dsimp [circleMap] + + sorry + + theorem jensen_case_R_eq_one (f : ℂ → ℂ) (h₁f : Differentiable ℂ f) diff --git a/Nevanlinna/holomorphic_JensenFormula2.lean b/Nevanlinna/holomorphic_JensenFormula2.lean new file mode 100644 index 0000000..e69de29 diff --git a/Nevanlinna/specialFunctions.lean b/Nevanlinna/specialFunctions.lean new file mode 100644 index 0000000..27dfe04 --- /dev/null +++ b/Nevanlinna/specialFunctions.lean @@ -0,0 +1,54 @@ +import Mathlib.Analysis.SpecialFunctions.Integrals + +theorem intervalIntegral.intervalIntegrable_log' + {a : ℝ} + {b : ℝ} + {μ : MeasureTheory.Measure ℝ} + [MeasureTheory.IsLocallyFiniteMeasure μ] + (ha : 0 < a) : + IntervalIntegrable Real.log μ 0 a + := by + + sorry + +theorem integral_log₀ + {b : ℝ} + (hb : 0 < b) : + ∫ (x : ℝ) in (0)..b, Real.log x = b * (Real.log b - 1) := by + apply? + exact integral_log h + + +open Real Nat Set Finset + +open scoped Real Interval + +--variable {a b : ℝ} (n : ℕ) + +namespace intervalIntegral + +--open MeasureTheory + +--variable {f : ℝ → ℝ} {μ ν : Measure ℝ} [IsLocallyFiniteMeasure μ] (c d : ℝ) + +#check integral_mul_deriv_eq_deriv_mul + +theorem integral_log₁ + (h : (0 : ℝ) ∉ [[a, b]]) : + ∫ x in a..b, log x = b * log b - a * log a - b + a := by + + have h' : ∀ x ∈ [[a, b]], x ≠ 0 := + fun x (hx : x ∈ [[a, b]]) => ne_of_mem_of_not_mem hx h + have heq : ∀ x ∈ [[a, b]], x * x⁻¹ = 1 := + fun x hx => mul_inv_cancel (h' x hx) + + let A := fun x hx => hasDerivAt_log (h' x hx) + + convert integral_mul_deriv_eq_deriv_mul A (fun x _ => hasDerivAt_id x) + + convert integral_mul_deriv_eq_deriv_mul A + (fun x _ => hasDerivAt_id x) (continuousOn_inv₀.mono <| + subset_compl_singleton_iff.mpr h).intervalIntegrable + continuousOn_const.intervalIntegrable using 1 <;> + + simp [integral_congr heq, mul_comm, ← sub_add]