This commit is contained in:
Stefan Kebekus 2024-11-29 07:09:01 +01:00
parent 3f24072412
commit e20dcdbd19
3 changed files with 45 additions and 5 deletions

View File

@ -75,9 +75,6 @@ lemma WithTopCoe
rw [this] rw [this]
rfl rfl
lemma rwx lemma rwx
{a b : WithTop } {a b : WithTop }
(ha : a ≠ ) (ha : a ≠ )
@ -94,3 +91,12 @@ lemma untop_add
rw [WithTop.coe_add] rw [WithTop.coe_add]
rw [WithTop.coe_untop] rw [WithTop.coe_untop]
rw [WithTop.coe_untop] rw [WithTop.coe_untop]
lemma untop'_of_ne_top
{a : WithTop }
{d : }
(ha : a ≠ ) :
WithTop.untop' d a = a := by
obtain ⟨b, hb⟩ := WithTop.ne_top_iff_exists.1 ha
rw [← hb]
simp

View File

@ -102,3 +102,14 @@ theorem stronglyMeromorphicOn_of_makeStronglyMeromorphicOn
let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz let A := makeStronglyMeromorphicOn_changeDiscrete' hf hz
rw [stronglyMeromorphicAt_congr A] rw [stronglyMeromorphicAt_congr A]
exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz) exact StronglyMeromorphicAt_of_makeStronglyMeromorphic (hf z hz)
theorem makeStronglyMeromorphicOn_changeOrder
{f : }
{U : Set }
{z₀ : }
(hf : MeromorphicOn f U)
(hz₀ : z₀ ∈ U) :
(stronglyMeromorphicOn_of_makeStronglyMeromorphicOn hf z₀ hz₀).meromorphicAt.order = (hf z₀ hz₀).order := by
apply MeromorphicAt.order_congr
exact makeStronglyMeromorphicOn_changeDiscrete hf hz₀

View File

@ -383,6 +383,10 @@ theorem MeromorphicOn.decompose₃'
have h₃h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ := by have h₃h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order ≠ := by
intro z hz intro z hz
apply stronglyMeromorphicOn_ratlPolynomial₃order apply stronglyMeromorphicOn_ratlPolynomial₃order
have h₄h₁ : ∀ (z : ) (hz : z ∈ U), (h₁h₁ z hz).meromorphicAt.order = d z := by
intro z hz
rw [stronglyMeromorphicOn_divisor_ratlPolynomial₁]
rwa [h₁d]
let g' := f * h₁ let g' := f * h₁
have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn have h₁g' : MeromorphicOn g' U := h₁f.meromorphicOn.mul h₁h₁.meromorphicOn
@ -391,6 +395,23 @@ theorem MeromorphicOn.decompose₃'
rw [h₂h₁] rw [h₂h₁]
unfold d unfold d
simp simp
have h₃g' : ∀ u : U, (h₁g' u.1 u.2).order = 0 := by
intro u
rw [(h₁f u.1 u.2).meromorphicAt.order_mul (h₁h₁ u.1 u.2).meromorphicAt]
rw [h₄h₁]
unfold d
unfold MeromorphicOn.divisor
simp
have : (h₁f u.1 u.2).meromorphicAt.order = WithTop.untop' 0 (h₁f u.1 u.2).meromorphicAt.order := by
rw [eq_comm]
let A := h₃f u
exact untop'_of_ne_top A
rw [this]
simp
rw [← WithTop.LinearOrderedAddCommGroup.coe_neg]
rw [← WithTop.coe_add]
simp
exact u.2
let g := h₁g'.makeStronglyMeromorphicOn let g := h₁g'.makeStronglyMeromorphicOn
have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g' have h₁g : StronglyMeromorphicOn g U := stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁g'
@ -405,8 +426,10 @@ theorem MeromorphicOn.decompose₃'
have h₄g : ∀ u : U, g u ≠ 0 := by have h₄g : ∀ u : U, g u ≠ 0 := by
intro u intro u
rw [← (h₁g u.1 u.2).order_eq_zero_iff] rw [← (h₁g u.1 u.2).order_eq_zero_iff]
rw [makeStronglyMeromorphicOn_changeOrder]
sorry let A := h₃g' u
exact A
exact u.2
use g use g
constructor constructor