Update holomorphic.primitive.lean
This commit is contained in:
parent
7e6fc7bacd
commit
decb648c24
|
@ -1,7 +1,10 @@
|
||||||
import Mathlib.Analysis.Complex.TaylorSeries
|
import Mathlib.Analysis.Complex.TaylorSeries
|
||||||
|
import Mathlib.Analysis.SpecialFunctions.Integrals
|
||||||
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
import Mathlib.MeasureTheory.Integral.DivergenceTheorem
|
||||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||||
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
import Mathlib.MeasureTheory.Function.LocallyIntegrable
|
||||||
|
|
||||||
|
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
|
||||||
|
@ -151,30 +154,6 @@ theorem primitive_zeroAtBasepoint
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_lem1
|
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] [IsScalarTower ℝ ℂ E]
|
|
||||||
(v : E) :
|
|
||||||
HasDerivAt (primitive 0 (fun _ ↦ v)) v 0 := by
|
|
||||||
unfold primitive
|
|
||||||
simp
|
|
||||||
|
|
||||||
have : (fun (z : ℂ) => z.re • v + Complex.I • z.im • v) = (fun (y : ℂ) => ((fun w ↦ w) y) • v) := by
|
|
||||||
funext z
|
|
||||||
rw [smul_comm]
|
|
||||||
rw [← smul_assoc]
|
|
||||||
simp
|
|
||||||
have : z.re • v = (z.re : ℂ) • v := by exact rfl
|
|
||||||
rw [this, ← add_smul]
|
|
||||||
simp
|
|
||||||
rw [this]
|
|
||||||
|
|
||||||
have hc : HasDerivAt (fun (w : ℂ) ↦ w) 1 0 := by
|
|
||||||
apply hasDerivAt_id'
|
|
||||||
nth_rewrite 2 [← (one_smul ℂ v)]
|
|
||||||
exact HasDerivAt.smul_const hc v
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_fderivAtBasepointZero
|
theorem primitive_fderivAtBasepointZero
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
(f : ℂ → E)
|
||||||
|
@ -380,12 +359,122 @@ theorem primitive_fderivAtBasepointZero
|
||||||
linarith
|
linarith
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_translation
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
(f : ℂ → E)
|
||||||
|
(z₀ t : ℂ) :
|
||||||
|
primitive z₀ (f ∘ fun z ↦ (z - t)) = ((primitive (z₀ - t) f) ∘ fun z ↦ (z - t)) := by
|
||||||
|
funext z
|
||||||
|
unfold primitive
|
||||||
|
simp
|
||||||
|
|
||||||
|
let g : ℝ → E := fun x ↦ f ( {re := x, im := z₀.im - t.im} )
|
||||||
|
have {x : ℝ} : f ({ re := x, im := z₀.im } - t) = g (1*x - t.re) := by
|
||||||
|
congr 1
|
||||||
|
apply Complex.ext <;> simp
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
left
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.re)]
|
||||||
|
simp
|
||||||
|
|
||||||
|
congr 1
|
||||||
|
let g : ℝ → E := fun x ↦ f ( {re := z.re - t.re, im := x} )
|
||||||
|
have {x : ℝ} : f ({ re := z.re, im := x} - t) = g (1*x - t.im) := by
|
||||||
|
congr 1
|
||||||
|
apply Complex.ext <;> simp
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.integral_comp_mul_sub g one_ne_zero (t.im)]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem primitive_fderivAtBasepoint
|
||||||
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
|
{z₀ : ℂ}
|
||||||
|
(f : ℂ → E)
|
||||||
|
(hf : Continuous f) :
|
||||||
|
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||||
|
|
||||||
|
let g := f ∘ fun z ↦ z + z₀
|
||||||
|
have : Continuous g := by continuity
|
||||||
|
let A := primitive_fderivAtBasepointZero g this
|
||||||
|
simp at A
|
||||||
|
|
||||||
|
let B := primitive_translation g z₀ z₀
|
||||||
|
simp at B
|
||||||
|
have : (g ∘ fun z ↦ (z - z₀)) = f := by
|
||||||
|
funext z
|
||||||
|
dsimp [g]
|
||||||
|
simp
|
||||||
|
rw [this] at B
|
||||||
|
rw [B]
|
||||||
|
have : f z₀ = (1 : ℂ) • (f z₀) := by
|
||||||
|
exact (MulAction.one_smul (f z₀)).symm
|
||||||
|
conv =>
|
||||||
|
arg 2
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
apply HasDerivAt.scomp
|
||||||
|
simp
|
||||||
|
have : g 0 = f z₀ := by simp [g]
|
||||||
|
rw [← this]
|
||||||
|
exact A
|
||||||
|
apply HasDerivAt.sub_const
|
||||||
|
have : (fun (x : ℂ) ↦ x) = id := by
|
||||||
|
funext x
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
exact hasDerivAt_id z₀
|
||||||
|
|
||||||
|
|
||||||
theorem primitive_additivity
|
theorem primitive_additivity
|
||||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||||
(f : ℂ → E)
|
(f : ℂ → E)
|
||||||
(hf : Differentiable ℂ f)
|
(hf : Differentiable ℂ f)
|
||||||
(z₀ z₁ : ℂ) :
|
(z₀ z₁ : ℂ) :
|
||||||
(primitive z₁ f) = (primitive z₀ f) - (fun z ↦ primitive z₀ f z₁) := by
|
primitive z₀ f = fun z ↦ (primitive z₁ f) z + (primitive z₀ f z₁) := by
|
||||||
|
funext z
|
||||||
|
unfold primitive
|
||||||
|
|
||||||
|
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||||
|
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
sorry
|
sorry
|
||||||
|
--
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
|
sorry
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
have : (∫ (x : ℝ) in z₀.im..z.im, f { re := z.re, im := x }) = (∫ (x : ℝ) in z₀.im..z₁.im, f { re := z.re, im := x }) + (∫ (x : ℝ) in z₁.im..z.im, f { re := z.re, im := x }) := by
|
||||||
|
rw [intervalIntegral.integral_add_adjacent_intervals]
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
|
sorry
|
||||||
|
--
|
||||||
|
apply Continuous.intervalIntegrable
|
||||||
|
apply Continuous.comp
|
||||||
|
exact Differentiable.continuous hf
|
||||||
|
sorry
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
let A := integral_divergence₅ f hf ⟨z₁.re, z₀.im⟩ ⟨z.re, z₁.im⟩
|
||||||
|
simp at A
|
||||||
|
|
||||||
|
have {a b c d : E} : (b + a) + (c + d) = (a + c) + (b + d) := by
|
||||||
|
abel
|
||||||
|
rw [this]
|
||||||
|
rw [A]
|
||||||
|
abel
|
||||||
|
|
Loading…
Reference in New Issue