working…

This commit is contained in:
Stefan Kebekus 2024-07-30 16:45:26 +02:00
parent 8d100b2333
commit dd207b19a2
2 changed files with 75 additions and 26 deletions

View File

@ -194,28 +194,20 @@ theorem harmonic_is_realOfHolomorphic
exact reg₁f_I.differentiable le_rfl
let F := fun z ↦ (primitive 0 g) z + f 0
have regF : Differentiable F := by
apply Differentiable.add
intro x
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
exact A.differentiableAt
apply primitive_differentiable reg₁
simp
have pF' : ∀ x, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by
intro x
dsimp [F]
rw [fderiv_add_const]
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
let B : HasFDerivAt (primitive 0 g) (ContinuousLinearMap.lsmul (g x)) x := by
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact A
exact HasFDerivAt.fderiv B
have pF'' : ∀ x, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by
intro x
rw [DifferentiableAt.fderiv_restrictScalars (regF x), pF' x]
rw [DifferentiableAt.fderiv_restrictScalars (regF x)]
dsimp [F]
rw [fderiv_add_const]
rw [primitive_fderiv']
exact rfl
exact reg₁
use F
intro z
@ -241,6 +233,7 @@ theorem harmonic_is_realOfHolomorphic
simp
apply eq_of_fderiv_eq B A _ 0 C
intro x
rw [fderiv.comp]
simp
@ -257,6 +250,7 @@ theorem harmonic_is_realOfHolomorphic
rw [smul_eq_mul, smul_eq_mul]
ring
-- DifferentiableAt (⇑Complex.reCLM) (F x)
exact ContinuousLinearMap.differentiableAt Complex.reCLM
fun_prop
-- DifferentiableAt F x
exact regF.restrictScalars x

View File

@ -485,11 +485,11 @@ theorem primitive_translation
simp
theorem primitive_fderivAtBasepoint
theorem primitive_hasDerivAtBasepoint
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{z₀ : }
(f : → E)
(hf : Continuous f) :
{f : → E}
(hf : Continuous f)
(z₀ : ) :
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
let g := f ∘ fun z ↦ z + z₀
@ -597,15 +597,70 @@ theorem primitive_additivity
abel
theorem primitive_fderiv
theorem primitive_hasDerivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{z₀ z : }
(f : → E)
(hf : Differentiable f) :
{f : → E}
(hf : Differentiable f)
(z₀ z : ) :
HasDerivAt (primitive z₀ f) (f z) z := by
rw [primitive_additivity f hf z₀ z]
rw [← add_zero (f z)]
apply HasDerivAt.add
apply primitive_fderivAtBasepoint
apply primitive_hasDerivAtBasepoint
exact hf.continuous
apply hasDerivAt_const
theorem primitive_differentiable
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
Differentiable (primitive z₀ f) := by
intro z
exact (primitive_hasDerivAt hf z₀ z).differentiableAt
theorem primitive_hasFderivAt
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
∀ z, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ).flip (f z)) z := by
intro z
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt hf z₀ z
theorem primitive_hasFderivAt'
{f : }
(hf : Differentiable f)
(z₀ : ) :
∀ z, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul (f z)) z := by
intro z
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact primitive_hasDerivAt hf z₀ z
theorem primitive_fderiv
{E : Type u} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E]
{f : → E}
(hf : Differentiable f)
(z₀ : ) :
∀ z, (fderiv (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ).flip (f z) := by
intro z
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt hf z₀ z
theorem primitive_fderiv'
{f : }
(hf : Differentiable f)
(z₀ : ) :
∀ z, (fderiv (primitive z₀ f) z) = ContinuousLinearMap.lsmul (f z) := by
intro z
apply HasFDerivAt.fderiv
exact primitive_hasFderivAt' hf z₀ z