working…

This commit is contained in:
Stefan Kebekus 2024-07-30 15:11:57 +02:00
parent 1d27eeb66b
commit 8d100b2333

View File

@ -1,4 +1,3 @@
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
import Nevanlinna.complexHarmonic
import Nevanlinna.holomorphicAt
import Nevanlinna.holomorphic_primitive
@ -194,33 +193,53 @@ theorem harmonic_is_realOfHolomorphic
apply Differentiable.const_smul
exact reg₁f_I.differentiable le_rfl
let F := primitive 0 g
let F := fun z ↦ (primitive 0 g) z + f 0
have regF : Differentiable F := by
apply Differentiable.add
intro x
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
exact A.differentiableAt
simp
have pF : ∀ x a, (fderiv F x) a = (g x) * a := by
sorry
have pF' : ∀ x, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by
intro x
dsimp [F]
rw [fderiv_add_const]
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
let B : HasFDerivAt (primitive 0 g) (ContinuousLinearMap.lsmul (g x)) x := by
rw [hasFDerivAt_iff_hasDerivAt]
simp
exact A
exact HasFDerivAt.fderiv B
have regF : Differentiable F := by sorry
have pF'' : ∀ x, (fderiv F x) = ContinuousLinearMap.lsmul (g x) := by
intro x
rw [DifferentiableAt.fderiv_restrictScalars (regF x), pF' x]
exact rfl
use F
intro z
constructor
· -- HolomorphicAt F z
apply HolomorphicAt_iff.2
use {z : | true}
use Set.univ
constructor
· exact isOpen_const
· constructor
· simp
· intro w hw
let A : HasDerivAt (primitive 0 g) (g w) w := primitive_fderiv g reg₁
apply A.differentiableAt
· intro w _
exact regF w
· -- (F z).re = f z
have A := reg₂f.differentiable one_le_two
have B : Differentiable (Complex.reCLM ∘ F) := by
apply Differentiable.comp
exact ContinuousLinearMap.differentiable Complex.reCLM
exact Differentiable.restrictScalars regF
have C : (F 0).re = f 0 := by sorry
have C : (F 0).re = f 0 := by
dsimp [F]
rw [primitive_zeroAtBasepoint]
simp
apply eq_of_fderiv_eq B A _ 0 C
intro x
rw [fderiv.comp]
@ -228,7 +247,7 @@ theorem harmonic_is_realOfHolomorphic
apply ContinuousLinearMap.ext
intro w
simp
rw [pF]
rw [pF'']
dsimp [g, f_1, f_I, partialDeriv]
simp
have : w = w.re • 1 + w.im • Complex.I := by simp