working…
This commit is contained in:
parent
8d100b2333
commit
dd207b19a2
|
@ -194,28 +194,20 @@ theorem harmonic_is_realOfHolomorphic
|
|||
exact reg₁f_I.differentiable le_rfl
|
||||
|
||||
let F := fun z ↦ (primitive 0 g) z + f 0
|
||||
|
||||
have regF : Differentiable ℂ F := by
|
||||
apply Differentiable.add
|
||||
intro x
|
||||
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
|
||||
exact A.differentiableAt
|
||||
apply primitive_differentiable reg₁
|
||||
simp
|
||||
|
||||
have pF' : ∀ x, (fderiv ℂ F x) = ContinuousLinearMap.lsmul ℂ ℂ (g x) := by
|
||||
intro x
|
||||
dsimp [F]
|
||||
rw [fderiv_add_const]
|
||||
let A : HasDerivAt (primitive 0 g) (g x) x := primitive_fderiv g reg₁
|
||||
let B : HasFDerivAt (primitive 0 g) (ContinuousLinearMap.lsmul ℂ ℂ (g x)) x := by
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact A
|
||||
exact HasFDerivAt.fderiv B
|
||||
|
||||
have pF'' : ∀ x, (fderiv ℝ F x) = ContinuousLinearMap.lsmul ℝ ℂ (g x) := by
|
||||
intro x
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (regF x), pF' x]
|
||||
rw [DifferentiableAt.fderiv_restrictScalars ℝ (regF x)]
|
||||
dsimp [F]
|
||||
rw [fderiv_add_const]
|
||||
rw [primitive_fderiv']
|
||||
exact rfl
|
||||
exact reg₁
|
||||
|
||||
use F
|
||||
intro z
|
||||
|
@ -241,6 +233,7 @@ theorem harmonic_is_realOfHolomorphic
|
|||
simp
|
||||
|
||||
apply eq_of_fderiv_eq B A _ 0 C
|
||||
|
||||
intro x
|
||||
rw [fderiv.comp]
|
||||
simp
|
||||
|
@ -257,6 +250,7 @@ theorem harmonic_is_realOfHolomorphic
|
|||
rw [smul_eq_mul, smul_eq_mul]
|
||||
ring
|
||||
-- DifferentiableAt ℝ (⇑Complex.reCLM) (F x)
|
||||
exact ContinuousLinearMap.differentiableAt Complex.reCLM
|
||||
fun_prop
|
||||
-- DifferentiableAt ℝ F x
|
||||
exact regF.restrictScalars ℝ x
|
||||
|
||||
|
|
|
@ -485,11 +485,11 @@ theorem primitive_translation
|
|||
simp
|
||||
|
||||
|
||||
theorem primitive_fderivAtBasepoint
|
||||
theorem primitive_hasDerivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{z₀ : ℂ}
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
{f : ℂ → E}
|
||||
(hf : Continuous f)
|
||||
(z₀ : ℂ) :
|
||||
HasDerivAt (primitive z₀ f) (f z₀) z₀ := by
|
||||
|
||||
let g := f ∘ fun z ↦ z + z₀
|
||||
|
@ -597,15 +597,70 @@ theorem primitive_additivity
|
|||
abel
|
||||
|
||||
|
||||
theorem primitive_fderiv
|
||||
theorem primitive_hasDerivAt
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{z₀ z : ℂ}
|
||||
(f : ℂ → E)
|
||||
(hf : Differentiable ℂ f) :
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ z : ℂ) :
|
||||
HasDerivAt (primitive z₀ f) (f z) z := by
|
||||
rw [primitive_additivity f hf z₀ z]
|
||||
rw [← add_zero (f z)]
|
||||
apply HasDerivAt.add
|
||||
apply primitive_fderivAtBasepoint
|
||||
apply primitive_hasDerivAtBasepoint
|
||||
exact hf.continuous
|
||||
apply hasDerivAt_const
|
||||
|
||||
|
||||
theorem primitive_differentiable
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
Differentiable ℂ (primitive z₀ f) := by
|
||||
intro z
|
||||
exact (primitive_hasDerivAt hf z₀ z).differentiableAt
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) ((ContinuousLinearMap.lsmul ℂ ℂ).flip (f z)) z := by
|
||||
intro z
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_hasFderivAt'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, HasFDerivAt (primitive z₀ f) (ContinuousLinearMap.lsmul ℂ ℂ (f z)) z := by
|
||||
intro z
|
||||
rw [hasFDerivAt_iff_hasDerivAt]
|
||||
simp
|
||||
exact primitive_hasDerivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_fderiv
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
{f : ℂ → E}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = (ContinuousLinearMap.lsmul ℂ ℂ).flip (f z) := by
|
||||
intro z
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt hf z₀ z
|
||||
|
||||
|
||||
theorem primitive_fderiv'
|
||||
{f : ℂ → ℂ}
|
||||
(hf : Differentiable ℂ f)
|
||||
(z₀ : ℂ) :
|
||||
∀ z, (fderiv ℂ (primitive z₀ f) z) = ContinuousLinearMap.lsmul ℂ ℂ (f z) := by
|
||||
intro z
|
||||
apply HasFDerivAt.fderiv
|
||||
exact primitive_hasFderivAt' hf z₀ z
|
||||
|
||||
|
|
Loading…
Reference in New Issue