Update analyticAt.lean
This commit is contained in:
parent
f83f772506
commit
dbea68061b
|
@ -123,7 +123,7 @@ theorem eventually_nhds_comp_composition
|
||||||
exact h₁t (ℓ y) hy
|
exact h₁t (ℓ y) hy
|
||||||
· constructor
|
· constructor
|
||||||
· apply IsOpen.preimage
|
· apply IsOpen.preimage
|
||||||
exact ContinuousLinearEquiv.continuous ℓ
|
exact hℓ
|
||||||
exact h₂t
|
exact h₂t
|
||||||
· exact h₃t
|
· exact h₃t
|
||||||
|
|
||||||
|
@ -132,9 +132,10 @@ theorem AnalyticAt.order_congr
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{z₀ : ℂ}
|
{z₀ : ℂ}
|
||||||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||||||
(hf₂ : AnalyticAt ℂ f₂ z₀)
|
(hf : f₁ =ᶠ[nhds z₀] f₂) :
|
||||||
(hf : ∀ᶠ (z : ℂ) in nhds z₀, f₁ z = f₂ z) :
|
hf₁.order = (hf₁.congr hf).order := by
|
||||||
hf₁.order = hf₂.order := by
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
@ -151,9 +152,9 @@ theorem AnalyticAt.order_comp_CLE
|
||||||
rw [AnalyticAt.order_eq_top_iff] at h₁f
|
rw [AnalyticAt.order_eq_top_iff] at h₁f
|
||||||
let A := eventually_nhds_comp_composition h₁f ℓ.continuous
|
let A := eventually_nhds_comp_composition h₁f ℓ.continuous
|
||||||
simp at A
|
simp at A
|
||||||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const
|
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
|
||||||
|
|
||||||
|
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const
|
||||||
have : this.order = ⊤ := by
|
have : this.order = ⊤ := by
|
||||||
rw [AnalyticAt.order_eq_top_iff]
|
rw [AnalyticAt.order_eq_top_iff]
|
||||||
simp
|
simp
|
||||||
|
@ -176,7 +177,7 @@ theorem AnalyticAt.order_comp_CLE
|
||||||
exact t₀
|
exact t₀
|
||||||
apply AnalyticAt.comp h₁g
|
apply AnalyticAt.comp h₁g
|
||||||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||||||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) this A]
|
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||||||
|
|
Loading…
Reference in New Issue