213 lines
6.3 KiB
Plaintext
213 lines
6.3 KiB
Plaintext
import Mathlib.Analysis.Analytic.IsolatedZeros
|
||
import Mathlib.Analysis.Complex.Basic
|
||
import Mathlib.Analysis.Analytic.Linear
|
||
|
||
|
||
|
||
theorem AnalyticAt.order_mul
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||
(hf₂ : AnalyticAt ℂ f₂ z₀) :
|
||
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
|
||
by_cases h₂f₁ : hf₁.order = ⊤
|
||
· simp [h₂f₁]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₁
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t y hy]
|
||
ring
|
||
· exact ⟨h₂t, h₃t⟩
|
||
· by_cases h₂f₂ : hf₂.order = ⊤
|
||
· simp [h₂f₂]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff]
|
||
rw [AnalyticAt.order_eq_top_iff, eventually_nhds_iff] at h₂f₂
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
|
||
use t
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t y hy]
|
||
ring
|
||
· exact ⟨h₂t, h₃t⟩
|
||
· obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (AnalyticAt.order_eq_nat_iff hf₁ ↑hf₁.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₁))
|
||
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (AnalyticAt.order_eq_nat_iff hf₂ ↑hf₂.order.toNat).1 (eq_comm.1 (ENat.coe_toNat h₂f₂))
|
||
rw [← ENat.coe_toNat h₂f₁, ← ENat.coe_toNat h₂f₂, ← ENat.coe_add]
|
||
rw [AnalyticAt.order_eq_nat_iff (AnalyticAt.mul hf₁ hf₂) ↑(hf₁.order.toNat + hf₂.order.toNat)]
|
||
use g₁ * g₂
|
||
constructor
|
||
· exact AnalyticAt.mul h₁g₁ h₁g₂
|
||
· constructor
|
||
· simp; tauto
|
||
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 h₃g₁
|
||
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 h₃g₂
|
||
rw [eventually_nhds_iff]
|
||
use t₁ ∩ t₂
|
||
constructor
|
||
· intro y hy
|
||
rw [h₁t₁ y hy.1, h₁t₂ y hy.2]
|
||
simp; ring
|
||
· constructor
|
||
· exact IsOpen.inter h₂t₁ h₂t₂
|
||
· exact Set.mem_inter h₃t₁ h₃t₂
|
||
|
||
|
||
theorem AnalyticAt.order_eq_zero_iff
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
hf.order = 0 ↔ f z₀ ≠ 0 := by
|
||
|
||
have : (0 : ENat) = (0 : Nat) := by rfl
|
||
rw [this, AnalyticAt.order_eq_nat_iff hf 0]
|
||
|
||
constructor
|
||
· intro hz
|
||
obtain ⟨g, _, h₂g, h₃g⟩ := hz
|
||
simp at h₃g
|
||
rw [Filter.Eventually.self_of_nhds h₃g]
|
||
tauto
|
||
· intro hz
|
||
use f
|
||
constructor
|
||
· exact hf
|
||
· constructor
|
||
· exact hz
|
||
· simp
|
||
|
||
|
||
theorem AnalyticAt.order_pow
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
{n : ℕ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
(hf.pow n).order = n * hf.order := by
|
||
|
||
induction' n with n hn
|
||
· simp; rw [AnalyticAt.order_eq_zero_iff]; simp
|
||
· simp
|
||
simp_rw [add_mul, pow_add]
|
||
simp
|
||
rw [AnalyticAt.order_mul (hf.pow n) hf]
|
||
rw [hn]
|
||
|
||
|
||
theorem AnalyticAt.supp_order_toNat
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f z₀) :
|
||
hf.order.toNat ≠ 0 → f z₀ = 0 := by
|
||
|
||
contrapose
|
||
intro h₁f
|
||
simp [hf.order_eq_zero_iff.2 h₁f]
|
||
|
||
|
||
theorem ContinuousLinearEquiv.analyticAt
|
||
(ℓ : ℂ ≃L[ℂ] ℂ) (z₀ : ℂ) : AnalyticAt ℂ (⇑ℓ) z₀ := ℓ.toContinuousLinearMap.analyticAt z₀
|
||
|
||
|
||
theorem eventually_nhds_comp_composition
|
||
{f₁ f₂ ℓ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : ∀ᶠ (z : ℂ) in nhds (ℓ z₀), f₁ z = f₂ z)
|
||
(hℓ : Continuous ℓ) :
|
||
∀ᶠ (z : ℂ) in nhds z₀, (f₁ ∘ ℓ) z = (f₂ ∘ ℓ) z := by
|
||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 hf
|
||
apply eventually_nhds_iff.2
|
||
use ℓ⁻¹' t
|
||
constructor
|
||
· intro y hy
|
||
exact h₁t (ℓ y) hy
|
||
· constructor
|
||
· apply IsOpen.preimage
|
||
exact hℓ
|
||
exact h₂t
|
||
· exact h₃t
|
||
|
||
|
||
theorem AnalyticAt.order_congr
|
||
{f₁ f₂ : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf₁ : AnalyticAt ℂ f₁ z₀)
|
||
(hf : f₁ =ᶠ[nhds z₀] f₂) :
|
||
hf₁.order = (hf₁.congr hf).order := by
|
||
|
||
|
||
|
||
sorry
|
||
|
||
|
||
theorem AnalyticAt.order_comp_CLE
|
||
(ℓ : ℂ ≃L[ℂ] ℂ)
|
||
{f : ℂ → ℂ}
|
||
{z₀ : ℂ}
|
||
(hf : AnalyticAt ℂ f (ℓ z₀)) :
|
||
hf.order = (hf.comp (ℓ.analyticAt z₀)).order := by
|
||
|
||
by_cases h₁f : hf.order = ⊤
|
||
· rw [h₁f]
|
||
rw [AnalyticAt.order_eq_top_iff] at h₁f
|
||
let A := eventually_nhds_comp_composition h₁f ℓ.continuous
|
||
simp at A
|
||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||
|
||
have : AnalyticAt ℂ (0 : ℂ → ℂ) z₀ := by apply analyticAt_const
|
||
have : this.order = ⊤ := by
|
||
rw [AnalyticAt.order_eq_top_iff]
|
||
simp
|
||
rw [this]
|
||
· let n := hf.order.toNat
|
||
have hn : hf.order = n := Eq.symm (ENat.coe_toNat h₁f)
|
||
rw [hn]
|
||
rw [AnalyticAt.order_eq_nat_iff] at hn
|
||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := hn
|
||
have A := eventually_nhds_comp_composition h₃g ℓ.continuous
|
||
|
||
have t₁ : AnalyticAt ℂ (fun z => ℓ z - ℓ z₀) z₀ := by
|
||
apply AnalyticAt.sub
|
||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||
exact analyticAt_const
|
||
have t₀ : AnalyticAt ℂ (fun z => (ℓ z - ℓ z₀) ^ n) z₀ := by
|
||
exact pow t₁ n
|
||
have : AnalyticAt ℂ (fun z ↦ (ℓ z - ℓ z₀) ^ n • g (ℓ z) : ℂ → ℂ) z₀ := by
|
||
apply AnalyticAt.mul
|
||
exact t₀
|
||
apply AnalyticAt.comp h₁g
|
||
exact ContinuousLinearEquiv.analyticAt ℓ z₀
|
||
rw [AnalyticAt.order_congr (hf.comp (ℓ.analyticAt z₀)) A]
|
||
simp
|
||
|
||
rw [AnalyticAt.order_mul t₀ ((h₁g.comp (ℓ.analyticAt z₀)))]
|
||
|
||
have : t₁.order = (1 : ℕ) := by
|
||
rw [AnalyticAt.order_eq_nat_iff]
|
||
use (fun _ ↦ ℓ 1)
|
||
simp
|
||
constructor
|
||
· exact analyticAt_const
|
||
· apply Filter.Eventually.of_forall
|
||
intro x
|
||
calc ℓ x - ℓ z₀
|
||
_ = ℓ (x - z₀) := by
|
||
exact Eq.symm (ContinuousLinearEquiv.map_sub ℓ x z₀)
|
||
_ = ℓ ((x - z₀) * 1) := by
|
||
simp
|
||
_ = (x - z₀) * ℓ 1 := by
|
||
rw [← smul_eq_mul, ← smul_eq_mul]
|
||
exact ContinuousLinearEquiv.map_smul ℓ (x - z₀) 1
|
||
|
||
have : t₀.order = n := by
|
||
rw [AnalyticAt.order_pow t₁, this]
|
||
simp
|
||
|
||
rw [this]
|
||
|
||
have : (comp h₁g (ContinuousLinearEquiv.analyticAt ℓ z₀)).order = 0 := by
|
||
rwa [AnalyticAt.order_eq_zero_iff]
|
||
rw [this]
|
||
|
||
simp
|