Update holomorphic_JensenFormula.lean
This commit is contained in:
parent
6ab6e6e6a9
commit
da859defb1
|
@ -33,6 +33,12 @@ lemma int₀
|
||||||
(ha : a ∈ Metric.ball 0 1) :
|
(ha : a ∈ Metric.ball 0 1) :
|
||||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||||
|
|
||||||
|
by_cases h₁a : a = 0
|
||||||
|
· -- case: a = 0
|
||||||
|
rw [h₁a]
|
||||||
|
simp
|
||||||
|
|
||||||
|
-- case: a ≠ 0
|
||||||
simp_rw [l₂]
|
simp_rw [l₂]
|
||||||
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
have {x : ℝ} : Real.log ‖1 - circleMap 0 1 (-x) * a‖ = (fun w ↦ Real.log ‖1 - circleMap 0 1 (w) * a‖) (-x) := by rfl
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -58,12 +64,37 @@ lemma int₀
|
||||||
simp
|
simp
|
||||||
dsimp [f₁]
|
dsimp [f₁]
|
||||||
|
|
||||||
|
let ρ := ‖a‖⁻¹
|
||||||
|
have hρ : 1 < ρ := by
|
||||||
|
apply one_lt_inv_iff.mpr
|
||||||
|
constructor
|
||||||
|
· exact norm_pos_iff'.mpr h₁a
|
||||||
|
· exact mem_ball_zero_iff.mp ha
|
||||||
|
|
||||||
let F := fun z ↦ Real.log ‖1 - z * a‖
|
let F := fun z ↦ Real.log ‖1 - z * a‖
|
||||||
|
|
||||||
have hf : ∀ x ∈ Metric.ball 0 2 , HarmonicAt F x := by
|
have hf : ∀ x ∈ Metric.ball 0 ρ, HarmonicAt F x := by
|
||||||
sorry
|
intro x hx
|
||||||
|
apply logabs_of_holomorphicAt_is_harmonic
|
||||||
|
apply Differentiable.holomorphicAt
|
||||||
|
fun_prop
|
||||||
|
apply sub_ne_zero_of_ne
|
||||||
|
by_contra h
|
||||||
|
have : ‖x * a‖ < 1 := by
|
||||||
|
calc ‖x * a‖
|
||||||
|
_ = ‖x‖ * ‖a‖ := by exact NormedField.norm_mul' x a
|
||||||
|
_ < ρ * ‖a‖ := by
|
||||||
|
apply (mul_lt_mul_right _).2
|
||||||
|
exact mem_ball_zero_iff.mp hx
|
||||||
|
exact norm_pos_iff'.mpr h₁a
|
||||||
|
_ = 1 := by
|
||||||
|
dsimp [ρ]
|
||||||
|
apply inv_mul_cancel
|
||||||
|
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
|
||||||
|
rw [← h] at this
|
||||||
|
simp at this
|
||||||
|
|
||||||
let A := harmonic_meanValue 2 1 Real.zero_lt_one one_lt_two hf
|
let A := harmonic_meanValue ρ 1 Real.zero_lt_one hρ hf
|
||||||
dsimp [F] at A
|
dsimp [F] at A
|
||||||
simp at A
|
simp at A
|
||||||
exact A
|
exact A
|
||||||
|
|
Loading…
Reference in New Issue