working…

This commit is contained in:
Stefan Kebekus 2024-05-31 16:06:42 +02:00
parent 7a1359308e
commit d6e8f57019
3 changed files with 105 additions and 52 deletions

View File

@ -269,36 +269,26 @@ theorem holomorphicOn_is_harmonicOn {f : → F₁} {s : Set } (hs : IsOpe
unfold Complex.laplace
intro z hz
simp
have : DifferentiableAt f z := by
have : ∀ z ∈ s, partialDeriv Complex.I f z = Complex.I • partialDeriv 1 f z := by
sorry
let ZZ := h z hz
rw [CauchyRiemann₅ this]
have : partialDeriv Complex.I f =ᶠ[nhds z] Complex.I • partialDeriv 1 f := by
unfold Filter.EventuallyEq
unfold Filter.Eventually
simp
refine mem_nhds_iff.mpr ?_
use s
constructor
· intro x hx
simp
apply CauchyRiemann₅
apply DifferentiableOn.differentiableAt h
exact IsOpen.mem_nhds hs hx
· constructor
· exact hs
· exact hz
rw [partialDeriv_eventuallyEq this Complex.I]
rw [partialDeriv_smul'₂]
-- This lemma says that partial derivatives commute with complex scalar
-- multiplication. This is a consequence of partialDeriv_compContLin once we
-- note that complex scalar multiplication is continuous -linear.
have : ∀ v, ∀ s : , ∀ g : → F₁, Differentiable g → partialDeriv v (s • g) = s • (partialDeriv v g) := by
intro v s g hg
-- Present scalar multiplication as a continuous -linear map. This is
-- horrible, there must be better ways to do that.
let sMuls : F₁ →L[] F₁ :=
{
toFun := fun x ↦ s • x
map_add' := by exact fun x y => DistribSMul.smul_add s x y
map_smul' := by exact fun m x => (smul_comm ((RingHom.id ) m) s x).symm
cont := continuous_const_smul s
}
-- Bring the goal into a form that is recognized by
-- partialDeriv_compContLin.
have : s • g = sMuls ∘ g := by rfl
rw [this]
rw [partialDeriv_compContLin hg]
rfl
rw [this]
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
rw [CauchyRiemann₄ h]
rw [this]
@ -399,7 +389,6 @@ theorem log_normSq_of_holomorphicOn_is_harmonicOn
exact h₁ z
theorem log_normSq_of_holomorphic_is_harmonic
{f : }
(h₁ : Differentiable f)

View File

@ -94,7 +94,7 @@ theorem laplace_add_ContDiffOn
rw [add_comm]
theorem laplace_smul {f : → F} (h : ContDiff 2 f) : ∀ v : , Complex.laplace (v • f) = v • (Complex.laplace f) := by
theorem laplace_smul {f : → F} : ∀ v : , Complex.laplace (v • f) = v • (Complex.laplace f) := by
intro v
unfold Complex.laplace
rw [partialDeriv_smul₂]
@ -103,11 +103,6 @@ theorem laplace_smul {f : → F} (h : ContDiff 2 f) : ∀ v : , Compl
rw [partialDeriv_smul₂]
simp
exact (partialDeriv_contDiff h Complex.I).differentiable le_rfl
exact h.differentiable one_le_two
exact (partialDeriv_contDiff h 1).differentiable le_rfl
exact h.differentiable one_le_two
theorem laplace_compContLin {f : → F} {l : F →L[] G} (h : ContDiff 2 f) :
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by

View File

@ -30,16 +30,30 @@ theorem partialDeriv_add₁ {f : E → F} {v₁ v₂ : E} : partialDeriv 𝕜 (v
rw [map_add]
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} (h : Differentiable 𝕜 f) : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
unfold partialDeriv
funext w
have : a • f = fun y ↦ a • f y := by rfl
rw [this]
conv =>
left
intro w
rw [fderiv_const_smul (h w)]
by_cases ha : a = 0
· rw [ha]
simp
· by_cases hf : DifferentiableAt 𝕜 f w
· rw [fderiv_const_smul hf]
simp
· have : ¬DifferentiableAt 𝕜 (fun y => a • f y) w := by
by_contra contra
let ZZ := DifferentiableAt.const_smul contra a⁻¹
have : (fun y => a⁻¹ • a • f y) = f := by
funext i
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
simp
rw [this] at ZZ
exact hf ZZ
simp
rw [fderiv_zero_of_not_differentiableAt hf]
rw [fderiv_zero_of_not_differentiableAt this]
simp
theorem partialDeriv_add₂ {f₁ f₂ : E → F} {v : E} (h₁ : Differentiable 𝕜 f₁) (h₂ : Differentiable 𝕜 f₂) : partialDeriv 𝕜 v (f₁ + f₂) = (partialDeriv 𝕜 v f₁) + (partialDeriv 𝕜 v f₂) := by
@ -59,8 +73,7 @@ theorem partialDeriv_add₂_differentiableAt
{v : E}
{x : E}
(h₁ : DifferentiableAt 𝕜 f₁ x)
(h₂ : DifferentiableAt 𝕜 f₂ x)
:
(h₂ : DifferentiableAt 𝕜 f₂ x) :
partialDeriv 𝕜 v (f₁ + f₂) x = (partialDeriv 𝕜 v f₁) x + (partialDeriv 𝕜 v f₂) x := by
unfold partialDeriv
@ -88,6 +101,23 @@ theorem partialDeriv_compContLinAt {f : E → F} {l : F →L[𝕜] G} {v : E} {x
simp
theorem partialDeriv_compCLE {f : E → F} {l : F ≃L[𝕜] G} {v : E} : partialDeriv 𝕜 v (l ∘ f) = l ∘ partialDeriv 𝕜 v f := by
funext x
by_cases hyp : DifferentiableAt 𝕜 f x
· let lCLM : F →L[𝕜] G := l
suffices shyp : partialDeriv 𝕜 v (lCLM ∘ f) x = (lCLM ∘ partialDeriv 𝕜 v f) x from by tauto
apply partialDeriv_compContLinAt
exact hyp
· unfold partialDeriv
rw [fderiv_zero_of_not_differentiableAt]
simp
rw [fderiv_zero_of_not_differentiableAt]
simp
exact hyp
rw [ContinuousLinearEquiv.comp_differentiableAt_iff]
exact hyp
theorem partialDeriv_contDiff {n : } {f : E → F} (h : ContDiff 𝕜 (n + 1) f) : ∀ v : E, ContDiff 𝕜 n (partialDeriv 𝕜 v f) := by
unfold partialDeriv
intro v
@ -155,15 +185,54 @@ theorem partialDeriv_eventuallyEq' {f₁ f₂ : E → F} {x : E} (h : f₁ =ᶠ[
section restrictScalars
variable (𝕜 : Type*) [NontriviallyNormedField 𝕜]
variable {𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
variable [IsScalarTower 𝕜 𝕜' E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
variable [IsScalarTower 𝕜 𝕜' F]
--variable {f : E → F}
theorem partialDeriv_smul'₂
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
[IsScalarTower 𝕜 𝕜' F]
{f : E → F} {a : 𝕜'} {v : E} :
partialDeriv 𝕜 v (a • f) = a • partialDeriv 𝕜 v f := by
theorem partialDeriv_restrictScalars {f : E → F} {v : E} :
funext w
by_cases ha : a = 0
· unfold partialDeriv
have : a • f = fun y ↦ a • f y := by rfl
rw [this, ha]
simp
· -- Now a is not zero. We present scalar multiplication with a as a continuous linear equivalence.
let smulCLM : F ≃L[𝕜] F :=
{
toFun := fun x ↦ a • x
map_add' := fun x y => DistribSMul.smul_add a x y
map_smul' := fun m x => (smul_comm ((RingHom.id 𝕜) m) a x).symm
invFun := fun x ↦ a⁻¹ • x
left_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
right_inv := by
intro x
simp
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
continuous_toFun := continuous_const_smul a
continuous_invFun := continuous_const_smul a⁻¹
}
have : a • f = smulCLM ∘ f := by tauto
rw [this]
rw [partialDeriv_compCLE]
tauto
theorem partialDeriv_restrictScalars
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
{𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
[IsScalarTower 𝕜 𝕜' E]
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
[IsScalarTower 𝕜 𝕜' F]
{f : E → F} {v : E} :
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
intro hf
unfold partialDeriv