Working…

This commit is contained in:
Stefan Kebekus 2024-12-16 07:36:01 +01:00
parent e80aebfe38
commit cf301d65d6
4 changed files with 34 additions and 2 deletions

View File

@ -23,6 +23,7 @@ instance
attribute [coe] Divisor.toFun attribute [coe] Divisor.toFun
theorem Divisor.discreteSupport theorem Divisor.discreteSupport
{U : Set } {U : Set }
(hU : IsClosed U) (hU : IsClosed U)
@ -57,7 +58,6 @@ theorem Divisor.discreteSupport
exact False.elim (h₁x (A x hx)) exact False.elim (h₁x (A x hx))
theorem Divisor.closedSupport theorem Divisor.closedSupport
{U : Set } {U : Set }
(hU : IsClosed U) (hU : IsClosed U)
@ -91,3 +91,17 @@ theorem Divisor.finiteSupport
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed) · apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
exact D.supportInU exact D.supportInU
· exact D.discreteSupport hU.isClosed · exact D.discreteSupport hU.isClosed
theorem Divisor.codiscreteWithin
{U : Set }
(D : Divisor U) :
D.toFun.supportᶜ ∈ Filter.codiscreteWithin U := by
simp_rw [mem_codiscreteWithin, disjoint_principal_right]
intro x hx
obtain ⟨s, hs⟩ := Filter.eventuallyEq_iff_exists_mem.1 (D.locallyFiniteInU x hx)
apply Filter.mem_of_superset hs.1
intro y hy
simp [hy]
tauto

View File

@ -182,3 +182,18 @@ theorem StronglyMeromorphicOn.analyticOnNhd
tauto tauto
tauto tauto
assumption assumption
theorem StronglyMeromorphicOn.support_divisor
{f : }
{U : Set }
(hU : IsPreconnected U)
(h₁f : StronglyMeromorphicOn f U)
(h₂f : ∃ u ∈ U, f u ≠ 0) :
U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by
ext u
constructor
· sorry
· intro hu
simp at hu
sorry

View File

@ -12,6 +12,8 @@ open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
/- Integral and Integrability up to changes on codiscrete sets -/
theorem d theorem d
{U S : Set } {U S : Set }
{c : } {c : }

View File

@ -529,7 +529,8 @@ theorem MeromorphicOn.decompose_log
rw [Filter.eventuallyEq_iff_exists_mem] rw [Filter.eventuallyEq_iff_exists_mem]
use {z | f z ≠ 0} use {z | f z ≠ 0}
constructor constructor
· sorry ·
sorry
· intro z hz · intro z hz
nth_rw 1 [h₄g] nth_rw 1 [h₄g]
simp simp