Working…
This commit is contained in:
parent
e80aebfe38
commit
cf301d65d6
@ -23,6 +23,7 @@ instance
|
|||||||
attribute [coe] Divisor.toFun
|
attribute [coe] Divisor.toFun
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem Divisor.discreteSupport
|
theorem Divisor.discreteSupport
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hU : IsClosed U)
|
(hU : IsClosed U)
|
||||||
@ -57,7 +58,6 @@ theorem Divisor.discreteSupport
|
|||||||
exact False.elim (h₁x (A x hx))
|
exact False.elim (h₁x (A x hx))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem Divisor.closedSupport
|
theorem Divisor.closedSupport
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(hU : IsClosed U)
|
(hU : IsClosed U)
|
||||||
@ -91,3 +91,17 @@ theorem Divisor.finiteSupport
|
|||||||
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
|
· apply IsCompact.of_isClosed_subset hU (D.closedSupport hU.isClosed)
|
||||||
exact D.supportInU
|
exact D.supportInU
|
||||||
· exact D.discreteSupport hU.isClosed
|
· exact D.discreteSupport hU.isClosed
|
||||||
|
|
||||||
|
|
||||||
|
theorem Divisor.codiscreteWithin
|
||||||
|
{U : Set ℂ}
|
||||||
|
(D : Divisor U) :
|
||||||
|
D.toFun.supportᶜ ∈ Filter.codiscreteWithin U := by
|
||||||
|
|
||||||
|
simp_rw [mem_codiscreteWithin, disjoint_principal_right]
|
||||||
|
intro x hx
|
||||||
|
obtain ⟨s, hs⟩ := Filter.eventuallyEq_iff_exists_mem.1 (D.locallyFiniteInU x hx)
|
||||||
|
apply Filter.mem_of_superset hs.1
|
||||||
|
intro y hy
|
||||||
|
simp [hy]
|
||||||
|
tauto
|
||||||
|
@ -182,3 +182,18 @@ theorem StronglyMeromorphicOn.analyticOnNhd
|
|||||||
tauto
|
tauto
|
||||||
tauto
|
tauto
|
||||||
assumption
|
assumption
|
||||||
|
|
||||||
|
theorem StronglyMeromorphicOn.support_divisor
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(hU : IsPreconnected U)
|
||||||
|
(h₁f : StronglyMeromorphicOn f U)
|
||||||
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
|
U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
|
|
||||||
|
ext u
|
||||||
|
constructor
|
||||||
|
· sorry
|
||||||
|
· intro hu
|
||||||
|
simp at hu
|
||||||
|
sorry
|
||||||
|
@ -12,6 +12,8 @@ open scoped Interval Topology
|
|||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
|
||||||
|
/- Integral and Integrability up to changes on codiscrete sets -/
|
||||||
|
|
||||||
theorem d
|
theorem d
|
||||||
{U S : Set ℂ}
|
{U S : Set ℂ}
|
||||||
{c : ℂ}
|
{c : ℂ}
|
||||||
|
@ -529,7 +529,8 @@ theorem MeromorphicOn.decompose_log
|
|||||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
use {z | f z ≠ 0}
|
use {z | f z ≠ 0}
|
||||||
constructor
|
constructor
|
||||||
· sorry
|
·
|
||||||
|
sorry
|
||||||
· intro z hz
|
· intro z hz
|
||||||
nth_rw 1 [h₄g]
|
nth_rw 1 [h₄g]
|
||||||
simp
|
simp
|
||||||
|
Loading…
Reference in New Issue
Block a user