Update analyticOn_zeroSet.lean
This commit is contained in:
parent
5dc437751b
commit
cd58c18a78
|
@ -285,19 +285,19 @@ theorem finiteZeros
|
||||||
(h₂U : IsCompact U)
|
(h₂U : IsCompact U)
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
(h₂f : ∃ u ∈ U, f u ≠ 0) :
|
||||||
Set.Finite ((U.restrict f)⁻¹' {0}) := by
|
Set.Finite (U.restrict f⁻¹' {0}) := by
|
||||||
|
|
||||||
have hinter : IsCompact ↑(U ∩ f⁻¹' {0}) := by
|
have closedness : IsClosed (U.restrict f⁻¹' {0}) := by
|
||||||
apply IsCompact.of_isClosed_subset h₂U
|
apply IsClosed.preimage
|
||||||
apply h₁f.continuousOn.preimage_isClosed_of_isClosed
|
apply continuousOn_iff_continuous_restrict.1
|
||||||
exact IsCompact.isClosed h₂U
|
exact h₁f.continuousOn
|
||||||
exact isClosed_singleton
|
exact isClosed_singleton
|
||||||
exact Set.inter_subset_left
|
|
||||||
|
|
||||||
apply hinter.finite
|
have : CompactSpace U := by
|
||||||
apply DiscreteTopology.of_subset (s := ↑(U ∩ f⁻¹' {0}))
|
exact isCompact_iff_compactSpace.mp h₂U
|
||||||
|
|
||||||
|
apply (IsClosed.isCompact closedness).finite
|
||||||
exact discreteZeros h₁U h₁f h₂f
|
exact discreteZeros h₁U h₁f h₂f
|
||||||
rfl
|
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticOnCompact.eliminateZeros
|
theorem AnalyticOnCompact.eliminateZeros
|
||||||
|
|
Loading…
Reference in New Issue