Update laplace2.lean

This commit is contained in:
Stefan Kebekus 2024-06-24 17:30:30 +02:00
parent 42cf2e41b9
commit c1766f6a38

View File

@ -25,57 +25,211 @@ lemma vectorPresentation
simp
theorem LaplaceIndep
theorem BilinearCalc
[Fintype ι]
(v : Basis ι E)
(c : ι)
(L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F) :
L (fun _ => ∑ j : ι, c j • v j) = ∑ x : Fin 2 → ι, (c (x 0) * c (x 1)) • L ((fun i => v (x i))) := by
rw [L.map_sum]
conv =>
left
arg 2
intro r
rw [L.map_smul_univ]
simp
lemma c2
[Fintype ι]
(b : Basis ι E)
(hb : Orthonormal b)
(x y : E) :
⟪x, y⟫_ = ∑ i : ι, ⟪x, b i⟫_ * ⟪y, b i⟫_ := by
rw [vectorPresentation b hb x]
rw [vectorPresentation b hb y]
rw [Orthonormal.inner_sum hb]
simp
conv =>
right
arg 2
intro i'
rw [Orthonormal.inner_left_fintype hb]
rw [Orthonormal.inner_left_fintype hb]
lemma fin_sum
[Fintype ι]
(f : ιι → F) :
∑ r : Fin 2 → ι, f (r 0) (r 1) = ∑ r₀ : ι, (∑ r₁ : ι, f r₀ r₁) := by
rw [← Fintype.sum_prod_type']
apply Fintype.sum_equiv (finTwoArrowEquiv ι)
intro x
dsimp
theorem LaplaceIndep
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(f : E → F) :
∑ i, iteratedFDeriv 2 f z ![v₁ i, v₁ i] = ∑ i, iteratedFDeriv 2 f z ![v₂ i, v₂ i] := by
(L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F) :
∑ i, L (fun _ ↦ v₁ i) = ∑ i, L (fun _ => v₂ i) := by
have (v : E) : v = ∑ j, ⟪v₁ j, v⟫_ • (v₁ j) :=
sorry
have vector_vs_function
{y : Fin 2 → ι}
{v : ι → E}
: (fun i => v (y i)) = ![v (y 0), v (y 1)] := by
funext i
by_cases h : i = 0
· rw [h]
simp
· rw [Fin.eq_one_of_neq_zero i h]
simp
conv =>
right
arg 2
intro i
rw [this (v₂ i)]
rw [this (v₂ i)]
rw [vectorPresentation v₁ hv₁ (v₂ i)]
rw [BilinearCalc]
rw [Finset.sum_comm]
conv =>
right
arg 2
intro i
--rw [ContinuousMultilinearMap.map_sum_finset]
intro y
rw [← Finset.sum_smul]
rw [← c2 v₂ hv₂ (v₁ (y 0)) (v₁ (y 1))]
rw [vector_vs_function]
simp
have v : E := by sorry
--let t := ![∑ j, ⟪v₁ j, v⟫_ • (v₁ j), ∑ j, ⟪v₁ j, v⟫_ • (v₁ j)]
--simp at t
--have L : ContinuousMultilinearMap (fun (_ : Fin 2) ↦ E) F := by exact iteratedFDeriv 2 f z
--have α : Fin 2 → Type* := by exact fun _ ↦ ι
--have g : (i : Fin 2) → ι → E := by exact fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j))
--have A : (i : Fin 2) → Finset ι := by exact fun _ ↦ Finset.univ
let X := ContinuousMultilinearMap.map_sum
(iteratedFDeriv 2 f z)
(fun _ ↦ (fun j ↦ ⟪v₁ j, v⟫_ • (v₁ j)))
--
-- (fun _ ↦ Finset.univ)
simp at X
sorry
noncomputable def Laplace₁ (n : ) (f : EuclideanSpace (Fin n) → F) : EuclideanSpace (Fin n) → F := by
let e : Fin n → EuclideanSpace (Fin n) := fun i ↦ EuclideanSpace.single i (1 : )
exact fun z ↦ ∑ i, iteratedFDeriv 2 f z ![e i, e i]
rw [fin_sum (fun i₀ ↦ (fun i₁ ↦ ⟪v₁ i₀, v₁ i₁⟫_ • L ![v₁ i₀, v₁ i₁]))]
have xx {r₀ : ι} : ∀ r₁ : ι, r₁ ≠ r₀ → ⟪v₁ r₀, v₁ r₁⟫_ • L ![v₁ r₀, v₁ r₁] = 0 := by
intro r₁ hr₁
rw [orthonormal_iff_ite.1 hv₁]
simp
tauto
conv =>
right
arg 2
intro r₀
rw [Fintype.sum_eq_single r₀ xx]
rw [orthonormal_iff_ite.1 hv₁]
apply sum_congr
rfl
intro x _
rw [vector_vs_function]
simp
noncomputable def Laplace
noncomputable def Laplace_wrt_basis
[Fintype ι]
(v : Basis ι E)
(hv : Orthonormal v)
(_ : Orthonormal v)
(f : E → F) :
E → F :=
fun z ↦ ∑ i, iteratedFDeriv 2 f z ![v i, v i]
theorem LaplaceIndep'
[Fintype ι] [DecidableEq ι]
(v₁ : Basis ι E)
(hv₁ : Orthonormal v₁)
(v₂ : Basis ι E)
(hv₂ : Orthonormal v₂)
(f : E → F)
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
funext z
unfold Laplace_wrt_basis
let XX := LaplaceIndep v₁ hv₁ v₂ hv₂ (iteratedFDeriv 2 f z)
have vector_vs_function
{v : E}
: ![v, v] = (fun _ => v) := by
funext i
by_cases h : i = 0
· rw [h]
simp
· rw [Fin.eq_one_of_neq_zero i h]
simp
conv =>
left
arg 2
intro i
rw [vector_vs_function]
conv =>
right
arg 2
intro i
rw [vector_vs_function]
assumption
theorem LaplaceIndep''
[Fintype ι₁] [DecidableEq ι₁]
(v₁ : Basis ι₁ E)
(hv₁ : Orthonormal v₁)
[Fintype ι₂] [DecidableEq ι₂]
(v₂ : Basis ι₂ E)
(hv₂ : Orthonormal v₂)
(f : E → F)
: (Laplace_wrt_basis v₁ hv₁ f) = (Laplace_wrt_basis v₂ hv₂ f) := by
have b : ι₁ ≃ ι₂ := by
apply Fintype.equivOfCardEq
rw [← FiniteDimensional.finrank_eq_card_basis v₁]
rw [← FiniteDimensional.finrank_eq_card_basis v₂]
let v'₁ := Basis.reindex v₁ b
have hv'₁ : Orthonormal v'₁ := by
let A := Basis.reindex_apply v₁ b
have : ⇑v'₁ = v₁ ∘ b.symm := by
funext i
exact A i
rw [this]
let B := Orthonormal.comp hv₁ b.symm
apply B
exact Equiv.injective b.symm
rw [← LaplaceIndep' v'₁ hv'₁ v₂ hv₂ f]
unfold Laplace_wrt_basis
simp
funext z
rw [← Equiv.sum_comp b.symm]
apply Fintype.sum_congr
intro i₂
congr
rw [Basis.reindex_apply v₁ b i₂]
noncomputable def Laplace
(f : E → F)
: E → F := by
exact Laplace_wrt_basis (stdOrthonormalBasis E).toBasis (stdOrthonormalBasis E).orthonormal f
theorem LaplaceIndep'''
[Fintype ι] [DecidableEq ι]
(v : Basis ι E)
(hv : Orthonormal v)
(f : E → F)
: (Laplace f) = (Laplace_wrt_basis v hv f) := by
unfold Laplace
apply LaplaceIndep'' (stdOrthonormalBasis E).toBasis (stdOrthonormalBasis E).orthonormal v hv f
theorem Complex.Laplace'
(f : → F)
: (Laplace f) = fun z ↦ (iteratedFDeriv 2 f z) ![1, 1] + (iteratedFDeriv 2 f z) ![Complex.I, Complex.I] := by
rw [LaplaceIndep''' Complex.orthonormalBasisOneI.toBasis Complex.orthonormalBasisOneI.orthonormal f]
unfold Laplace_wrt_basis
simp