Update complexHarmonic.lean
This commit is contained in:
		| @@ -9,16 +9,55 @@ import Nevanlinna.cauchyRiemann | ||||
| noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by | ||||
|   intro f | ||||
|  | ||||
|   let fx  := fun w ↦ fderiv ℝ f w 1 | ||||
|   let fxx := fun z ↦ fderiv ℝ fx z 1 | ||||
|   let fy  := fun w ↦ fderiv ℝ f w Complex.I | ||||
|   let fyy := fun z ↦ fderiv ℝ fy z Complex.I | ||||
|   let fx  := fun w ↦ (fderiv ℝ f w) 1 | ||||
|   let fxx := fun w ↦ (fderiv ℝ fx w) 1 | ||||
|   let fy  := fun w ↦ (fderiv ℝ f w) Complex.I | ||||
|   let fyy := fun w ↦ (fderiv ℝ fy w) Complex.I | ||||
|   exact fun z ↦ (fxx z) + (fyy z) | ||||
|  | ||||
|  | ||||
| def Harmonic (f : ℂ → ℂ) : Prop := | ||||
|   (ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0) | ||||
|  | ||||
| #check second_derivative_symmetric | ||||
|  | ||||
| lemma zwoDiff (f : ℝ × ℝ → ℝ) (h : ContDiff ℝ 2 f) : ∀ z a b : ℂ, 0 = 1 := by | ||||
|   intro z a b | ||||
|  | ||||
|   let fx  := fun w ↦ (fderiv ℝ f w) 1 | ||||
|   let fxx := fun w ↦ (fderiv ℝ fx w) 1 | ||||
|   let f2  := (fderiv ℝ (fun w => fderiv ℝ f w) z) 1 1 | ||||
|  | ||||
|   have : iteratedFDeriv ℝ (1 + 1) f = 0 := by | ||||
|     rw [iteratedFDeriv_succ_eq_comp_left] | ||||
|  | ||||
|     simp | ||||
|     sorry | ||||
|  | ||||
|   have : f2 = fxx z := by | ||||
|     dsimp [f2, fxx, fx] | ||||
|  | ||||
|     sorry | ||||
|  | ||||
|   sorry | ||||
|  | ||||
|  | ||||
| lemma derivSymm (f : ℂ → ℂ) (h : Differentiable ℝ f) : | ||||
|   ∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by | ||||
|   intro z a b | ||||
|  | ||||
|   let f' := fun w => (fderiv ℝ f w) | ||||
|   have h₀ : ∀ y, HasFDerivAt f (f' y) y := by | ||||
|     exact fun y => DifferentiableAt.hasFDerivAt (h y) | ||||
|  | ||||
|   let f'' := (fderiv ℝ f' z) | ||||
|   have h₁ : HasFDerivAt f' f'' z := by | ||||
|     apply DifferentiableAt.hasFDerivAt | ||||
|     sorry | ||||
|  | ||||
|   let A := second_derivative_symmetric h₀ h₁ a b | ||||
|   dsimp [f'', f'] at A | ||||
|   apply A | ||||
|  | ||||
| theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : | ||||
|   Differentiable ℂ f → Harmonic f := by | ||||
| @@ -32,6 +71,7 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : | ||||
|   · -- Laplace of f is zero | ||||
|     intro z | ||||
|     unfold Complex.laplace | ||||
|  | ||||
|     simp | ||||
|  | ||||
|     conv => | ||||
| @@ -41,10 +81,10 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : | ||||
|       arg 2 | ||||
|       intro z | ||||
|       rw [CauchyRiemann₁ (h z)] | ||||
|      | ||||
|  | ||||
|     have t₀ : ∀ z, DifferentiableAt ℝ (fun w => (fderiv ℝ f w) 1) z := by | ||||
|       intro z | ||||
|        | ||||
|  | ||||
|       sorry | ||||
|  | ||||
|     have t₁ : ∀ x, (fderiv ℝ (fun w => Complex.I * (fderiv ℝ f w) 1) z) x | ||||
| @@ -54,9 +94,12 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : | ||||
|       simp | ||||
|       exact t₀ z | ||||
|     rw [t₁] | ||||
|      | ||||
|     have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I  | ||||
|  | ||||
|     have t₂₀ : Differentiable ℝ f := by sorry | ||||
|     have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I | ||||
|       = (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by | ||||
|       let A := derivSymm f t₂₀ z 1 Complex.I | ||||
|  | ||||
|       sorry | ||||
|     rw [t₂] | ||||
|  | ||||
| @@ -68,9 +111,8 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) : | ||||
|       arg 2 | ||||
|       intro z | ||||
|       rw [CauchyRiemann₁ (h z)] | ||||
|      | ||||
|  | ||||
|     rw [t₁] | ||||
|      | ||||
|  | ||||
|     rw [← mul_assoc] | ||||
|     simp | ||||
|      | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus