nevanlinna/Nevanlinna/complexHarmonic.lean

119 lines
2.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Nevanlinna.cauchyRiemann
noncomputable def Complex.laplace : () → () := by
intro f
let fx := fun w ↦ (fderiv f w) 1
let fxx := fun w ↦ (fderiv fx w) 1
let fy := fun w ↦ (fderiv f w) Complex.I
let fyy := fun w ↦ (fderiv fy w) Complex.I
exact fun z ↦ (fxx z) + (fyy z)
def Harmonic (f : ) : Prop :=
(ContDiff 2 f) ∧ (∀ z, Complex.laplace f z = 0)
#check second_derivative_symmetric
lemma zwoDiff (f : × ) (h : ContDiff 2 f) : ∀ z a b : , 0 = 1 := by
intro z a b
let fx := fun w ↦ (fderiv f w) 1
let fxx := fun w ↦ (fderiv fx w) 1
let f2 := (fderiv (fun w => fderiv f w) z) 1 1
have : iteratedFDeriv (1 + 1) f = 0 := by
rw [iteratedFDeriv_succ_eq_comp_left]
simp
sorry
have : f2 = fxx z := by
dsimp [f2, fxx, fx]
sorry
sorry
lemma derivSymm (f : ) (h : Differentiable f) :
∀ z a b : , (fderiv (fun w => fderiv f w) z) a b = (fderiv (fun w => fderiv f w) z) b a := by
intro z a b
let f' := fun w => (fderiv f w)
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
exact fun y => DifferentiableAt.hasFDerivAt (h y)
let f'' := (fderiv f' z)
have h₁ : HasFDerivAt f' f'' z := by
apply DifferentiableAt.hasFDerivAt
sorry
let A := second_derivative_symmetric h₀ h₁ a b
dsimp [f'', f'] at A
apply A
theorem re_comp_holomorphic_is_harmonic (f : ) :
Differentiable f → Harmonic f := by
intro h
constructor
· -- Complex.reCLM ∘ f is two times real continuously differentiable
exact ContDiff.restrict_scalars (Differentiable.contDiff h)
· -- Laplace of f is zero
intro z
unfold Complex.laplace
simp
conv =>
left
right
arg 1
arg 2
intro z
rw [CauchyRiemann₁ (h z)]
have t₀ : ∀ z, DifferentiableAt (fun w => (fderiv f w) 1) z := by
intro z
sorry
have t₁ : ∀ x, (fderiv (fun w => Complex.I * (fderiv f w) 1) z) x
= Complex.I * ((fderiv (fun w => (fderiv f w) 1) z) x) := by
intro x
rw [fderiv_const_mul]
simp
exact t₀ z
rw [t₁]
have t₂₀ : Differentiable f := by sorry
have t₂ : (fderiv (fun w => (fderiv f w) 1) z) Complex.I
= (fderiv (fun w => (fderiv f w) Complex.I) z) 1 := by
let A := derivSymm f t₂₀ z 1 Complex.I
sorry
rw [t₂]
conv =>
left
right
arg 2
arg 1
arg 2
intro z
rw [CauchyRiemann₁ (h z)]
rw [t₁]
rw [← mul_assoc]
simp