Update complexHarmonic.lean
This commit is contained in:
parent
ea3693ff24
commit
bfdc7f6d2a
|
@ -9,16 +9,55 @@ import Nevanlinna.cauchyRiemann
|
||||||
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
noncomputable def Complex.laplace : (ℂ → ℂ) → (ℂ → ℂ) := by
|
||||||
intro f
|
intro f
|
||||||
|
|
||||||
let fx := fun w ↦ fderiv ℝ f w 1
|
let fx := fun w ↦ (fderiv ℝ f w) 1
|
||||||
let fxx := fun z ↦ fderiv ℝ fx z 1
|
let fxx := fun w ↦ (fderiv ℝ fx w) 1
|
||||||
let fy := fun w ↦ fderiv ℝ f w Complex.I
|
let fy := fun w ↦ (fderiv ℝ f w) Complex.I
|
||||||
let fyy := fun z ↦ fderiv ℝ fy z Complex.I
|
let fyy := fun w ↦ (fderiv ℝ fy w) Complex.I
|
||||||
exact fun z ↦ (fxx z) + (fyy z)
|
exact fun z ↦ (fxx z) + (fyy z)
|
||||||
|
|
||||||
|
|
||||||
def Harmonic (f : ℂ → ℂ) : Prop :=
|
def Harmonic (f : ℂ → ℂ) : Prop :=
|
||||||
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
(ContDiff ℝ 2 f) ∧ (∀ z, Complex.laplace f z = 0)
|
||||||
|
|
||||||
|
#check second_derivative_symmetric
|
||||||
|
|
||||||
|
lemma zwoDiff (f : ℝ × ℝ → ℝ) (h : ContDiff ℝ 2 f) : ∀ z a b : ℂ, 0 = 1 := by
|
||||||
|
intro z a b
|
||||||
|
|
||||||
|
let fx := fun w ↦ (fderiv ℝ f w) 1
|
||||||
|
let fxx := fun w ↦ (fderiv ℝ fx w) 1
|
||||||
|
let f2 := (fderiv ℝ (fun w => fderiv ℝ f w) z) 1 1
|
||||||
|
|
||||||
|
have : iteratedFDeriv ℝ (1 + 1) f = 0 := by
|
||||||
|
rw [iteratedFDeriv_succ_eq_comp_left]
|
||||||
|
|
||||||
|
simp
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have : f2 = fxx z := by
|
||||||
|
dsimp [f2, fxx, fx]
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
lemma derivSymm (f : ℂ → ℂ) (h : Differentiable ℝ f) :
|
||||||
|
∀ z a b : ℂ, (fderiv ℝ (fun w => fderiv ℝ f w) z) a b = (fderiv ℝ (fun w => fderiv ℝ f w) z) b a := by
|
||||||
|
intro z a b
|
||||||
|
|
||||||
|
let f' := fun w => (fderiv ℝ f w)
|
||||||
|
have h₀ : ∀ y, HasFDerivAt f (f' y) y := by
|
||||||
|
exact fun y => DifferentiableAt.hasFDerivAt (h y)
|
||||||
|
|
||||||
|
let f'' := (fderiv ℝ f' z)
|
||||||
|
have h₁ : HasFDerivAt f' f'' z := by
|
||||||
|
apply DifferentiableAt.hasFDerivAt
|
||||||
|
sorry
|
||||||
|
|
||||||
|
let A := second_derivative_symmetric h₀ h₁ a b
|
||||||
|
dsimp [f'', f'] at A
|
||||||
|
apply A
|
||||||
|
|
||||||
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
Differentiable ℂ f → Harmonic f := by
|
Differentiable ℂ f → Harmonic f := by
|
||||||
|
@ -32,6 +71,7 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
· -- Laplace of f is zero
|
· -- Laplace of f is zero
|
||||||
intro z
|
intro z
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
|
|
||||||
simp
|
simp
|
||||||
|
|
||||||
conv =>
|
conv =>
|
||||||
|
@ -55,8 +95,11 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
exact t₀ z
|
exact t₀ z
|
||||||
rw [t₁]
|
rw [t₁]
|
||||||
|
|
||||||
|
have t₂₀ : Differentiable ℝ f := by sorry
|
||||||
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
have t₂ : (fderiv ℝ (fun w => (fderiv ℝ f w) 1) z) Complex.I
|
||||||
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
= (fderiv ℝ (fun w => (fderiv ℝ f w) Complex.I) z) 1 := by
|
||||||
|
let A := derivSymm f t₂₀ z 1 Complex.I
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
rw [t₂]
|
rw [t₂]
|
||||||
|
|
||||||
|
@ -73,4 +116,3 @@ theorem re_comp_holomorphic_is_harmonic (f : ℂ → ℂ) :
|
||||||
|
|
||||||
rw [← mul_assoc]
|
rw [← mul_assoc]
|
||||||
simp
|
simp
|
||||||
|
|
Loading…
Reference in New Issue