Update holomorphic.primitive.lean
This commit is contained in:
parent
6d36769dab
commit
bb74aa273f
|
@ -176,13 +176,84 @@ theorem primitive_lem1
|
|||
|
||||
theorem primitive_fderivAtBasepoint
|
||||
{E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E]
|
||||
(f : ℂ → E) :
|
||||
(f : ℂ → E)
|
||||
(hf : Continuous f) :
|
||||
HasDerivAt (primitive 0 f) (f 0) 0 := by
|
||||
unfold primitive
|
||||
simp
|
||||
apply hasDerivAt_iff_isLittleO.2
|
||||
simp
|
||||
rw [Asymptotics.isLittleO_iff]
|
||||
intro c hc
|
||||
|
||||
have {z : ℂ} {e : E} : z • e = (∫ (x : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (x : ℝ) in (0)..(z.im), e:= by
|
||||
simp
|
||||
rw [smul_comm]
|
||||
rw [← smul_assoc]
|
||||
simp
|
||||
have : z.re • e = (z.re : ℂ) • e := by exact rfl
|
||||
rw [this, ← add_smul]
|
||||
simp
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
arg 2
|
||||
rw [this]
|
||||
have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by
|
||||
abel
|
||||
have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by sorry
|
||||
have t₁ {r : ℝ} :IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 r := by sorry
|
||||
have t₂ {a b : ℝ}: IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by sorry
|
||||
have t₃ {a : ℝ} : IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 a := by sorry
|
||||
conv =>
|
||||
left
|
||||
intro x
|
||||
left
|
||||
arg 1
|
||||
rw [this]
|
||||
rw [← smul_sub]
|
||||
rw [← intervalIntegral.integral_sub t₀ t₁]
|
||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
let s := f⁻¹' Metric.ball (f 0) c
|
||||
use s
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
apply IsOpen.preimage hf
|
||||
exact Metric.isOpen_ball
|
||||
apply Set.mem_preimage.mpr
|
||||
exact Metric.mem_ball_self hc
|
||||
· intro y hy
|
||||
have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re| := by
|
||||
let A := intervalIntegral.norm_integral_le_of_norm_le_const_ae
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
simp
|
||||
rw [norm_smul]
|
||||
simp
|
||||
_ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by
|
||||
apply add_le_add
|
||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||
_ ≤
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue