From bb74aa273f788b368ffa8a9b0e1e055ed46678d8 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Sun, 16 Jun 2024 19:00:30 +0200 Subject: [PATCH] Update holomorphic.primitive.lean --- Nevanlinna/holomorphic.primitive.lean | 73 ++++++++++++++++++++++++++- 1 file changed, 72 insertions(+), 1 deletion(-) diff --git a/Nevanlinna/holomorphic.primitive.lean b/Nevanlinna/holomorphic.primitive.lean index d9940bf..46732bd 100644 --- a/Nevanlinna/holomorphic.primitive.lean +++ b/Nevanlinna/holomorphic.primitive.lean @@ -176,13 +176,84 @@ theorem primitive_lem1 theorem primitive_fderivAtBasepoint {E : Type u} [NormedAddCommGroup E] [NormedSpace ℂ E] [CompleteSpace E] - (f : ℂ → E) : + (f : ℂ → E) + (hf : Continuous f) : HasDerivAt (primitive 0 f) (f 0) 0 := by unfold primitive simp apply hasDerivAt_iff_isLittleO.2 simp + rw [Asymptotics.isLittleO_iff] + intro c hc + + have {z : ℂ} {e : E} : z • e = (∫ (x : ℝ) in (0)..(z.re), e) + Complex.I • ∫ (x : ℝ) in (0)..(z.im), e:= by + simp + rw [smul_comm] + rw [← smul_assoc] + simp + have : z.re • e = (z.re : ℂ) • e := by exact rfl + rw [this, ← add_smul] + simp + conv => + left + intro x + left + arg 1 + arg 2 + rw [this] + have {A B C D :E} : (A + B) - (C + D) = (A - C) + (B - D) := by + abel + have t₀ {r : ℝ} : IntervalIntegrable (fun x => f { re := x, im := 0 }) MeasureTheory.volume 0 r := by sorry + have t₁ {r : ℝ} :IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 r := by sorry + have t₂ {a b : ℝ}: IntervalIntegrable (fun x_1 => f { re := a, im := x_1 }) MeasureTheory.volume 0 b := by sorry + have t₃ {a : ℝ} : IntervalIntegrable (fun x => f 0) MeasureTheory.volume 0 a := by sorry + conv => + left + intro x + left + arg 1 + rw [this] + rw [← smul_sub] + rw [← intervalIntegral.integral_sub t₀ t₁] + rw [← intervalIntegral.integral_sub t₂ t₃] + rw [Filter.eventually_iff_exists_mem] + + let s := f⁻¹' Metric.ball (f 0) c + use s + constructor + · apply IsOpen.mem_nhds + apply IsOpen.preimage hf + exact Metric.isOpen_ball + apply Set.mem_preimage.mpr + exact Metric.mem_ball_self hc + · intro y hy + have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re| := by + let A := intervalIntegral.norm_integral_le_of_norm_le_const_ae + + + sorry + + calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ + _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le + _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by + simp + rw [norm_smul] + simp + _ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by + apply add_le_add + apply intervalIntegral.norm_integral_le_abs_integral_norm + apply intervalIntegral.norm_integral_le_abs_integral_norm + _ ≤ + + + + + + + + + sorry