This commit is contained in:
Stefan Kebekus 2024-10-09 12:13:22 +02:00
parent 0298c9c97a
commit b4fd53c8b7
2 changed files with 65 additions and 14 deletions

View File

@ -1,3 +1,4 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Mathlib.Analysis.Calculus.ContDiff.Basic
import Mathlib.Analysis.Calculus.FDeriv.Add
@ -33,3 +34,20 @@ theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) :
have : c • f = fun x ↦ c • f x := rfl
rw [this]
exact ContDiff.const_smul c hf
-- Mathlib.Analysis.Analytic.Meromorphic
theorem meromorphicAt_congr
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
theorem meromorphicAt_congr'
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)

View File

@ -1,5 +1,6 @@
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.mathlibAddOn
/- Strongly MeromorphicAt -/
@ -20,27 +21,46 @@ theorem StronglyMeromorphicAt.meromorphicAt
· use 0; simp
rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
have : MeromorphicAt (fun z ↦ (z - z₀) ^ n • g z) z₀ := by
simp
apply MeromorphicAt.mul
· obtain ⟨n, g, h₁g, _, h₃g⟩ := h
rw [meromorphicAt_congr' h₃g]
apply MeromorphicAt.smul
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
sorry
apply MeromorphicAt.congr this
rw [Filter.eventuallyEq_comm]
exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
apply MeromorphicAt.id
apply MeromorphicAt.const
exact AnalyticAt.meromorphicAt h₁g
/- Strongly MeromorphicAt of positive order is analytic -/
/- Strongly MeromorphicAt of non-negative order is analytic -/
theorem StronglyMeromorphicAt.analytic
{f : }
{z₀ : }
(h₁f : StronglyMeromorphicAt f z₀)
(h₂f : 0 ≤ h₁f.meromorphicAt.order):
AnalyticAt f z₀ := by
sorry
let h₁f' := h₁f
rcases h₁f' with h|h
· rw [analyticAt_congr h]
exact analyticAt_const
· obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h
rw [analyticAt_congr h₃g]
have : h₁f.meromorphicAt.order = n := by
rw [MeromorphicAt.order_eq_int_iff]
use g
constructor
· exact h₁g
· constructor
· exact h₂g
· exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds
rw [this] at h₂f
apply AnalyticAt.smul
nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)]
apply AnalyticAt.pow
apply AnalyticAt.sub
apply analyticAt_id -- Warning: want apply AnalyticAt.id
apply analyticAt_const -- Warning: want AnalyticAt.const
exact h₁g
@ -51,7 +71,20 @@ def MeromorphicAt.makeStronglyMeromorphicAt
{z₀ : }
(hf : MeromorphicAt f z₀) :
:= by
exact 0
by_cases h₂f : hf.order =
· exact 0
· have : ∃ n : , hf.order = n := by
exact Option.ne_none_iff_exists'.mp h₂f
let o := hf.order.untop h₂f
have : hf.order = o := by
exact Eq.symm (WithTop.coe_untop hf.order h₂f)
rw [MeromorphicAt.order_eq_int_iff] at this
obtain ⟨g, hg⟩ := this
exact fun z ↦ (z - z₀) ^ o • g z
sorry
theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic