diff --git a/Nevanlinna/mathlibAddOn.lean b/Nevanlinna/mathlibAddOn.lean index 27bcf30..7fec19b 100644 --- a/Nevanlinna/mathlibAddOn.lean +++ b/Nevanlinna/mathlibAddOn.lean @@ -1,3 +1,4 @@ +import Mathlib.Analysis.Analytic.Meromorphic import Mathlib.Analysis.Calculus.ContDiff.Basic import Mathlib.Analysis.Calculus.FDeriv.Add @@ -33,3 +34,20 @@ theorem ContDiff.const_smul' {f : E → F} (c : R) (hf : ContDiff 𝕜 n f) : have : c • f = fun x ↦ c • f x := rfl rw [this] exact ContDiff.const_smul c hf + + +-- Mathlib.Analysis.Analytic.Meromorphic + +theorem meromorphicAt_congr + {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] + {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] + {f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜} + (h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x := + ⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩ + +theorem meromorphicAt_congr' + {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] + {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] + {f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜} + (h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x := + meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds) diff --git a/Nevanlinna/stronglyMeromorphic.lean b/Nevanlinna/stronglyMeromorphic.lean index 6d9daff..5c84145 100644 --- a/Nevanlinna/stronglyMeromorphic.lean +++ b/Nevanlinna/stronglyMeromorphic.lean @@ -1,5 +1,6 @@ import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt +import Nevanlinna.mathlibAddOn /- Strongly MeromorphicAt -/ @@ -20,27 +21,46 @@ theorem StronglyMeromorphicAt.meromorphicAt · use 0; simp rw [analyticAt_congr h] exact analyticAt_const - · obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h - have : MeromorphicAt (fun z ↦ (z - z₀) ^ n • g z) z₀ := by - simp - apply MeromorphicAt.mul - apply MeromorphicAt.zpow - apply MeromorphicAt.sub - - sorry - apply MeromorphicAt.congr this - rw [Filter.eventuallyEq_comm] - exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds + · obtain ⟨n, g, h₁g, _, h₃g⟩ := h + rw [meromorphicAt_congr' h₃g] + apply MeromorphicAt.smul + apply MeromorphicAt.zpow + apply MeromorphicAt.sub + apply MeromorphicAt.id + apply MeromorphicAt.const + exact AnalyticAt.meromorphicAt h₁g -/- Strongly MeromorphicAt of positive order is analytic -/ +/- Strongly MeromorphicAt of non-negative order is analytic -/ theorem StronglyMeromorphicAt.analytic {f : ℂ → ℂ} {z₀ : ℂ} (h₁f : StronglyMeromorphicAt f z₀) (h₂f : 0 ≤ h₁f.meromorphicAt.order): AnalyticAt ℂ f z₀ := by - sorry + let h₁f' := h₁f + rcases h₁f' with h|h + · rw [analyticAt_congr h] + exact analyticAt_const + · obtain ⟨n, g, h₁g, h₂g, h₃g⟩ := h + rw [analyticAt_congr h₃g] + + have : h₁f.meromorphicAt.order = n := by + rw [MeromorphicAt.order_eq_int_iff] + use g + constructor + · exact h₁g + · constructor + · exact h₂g + · exact Filter.EventuallyEq.filter_mono h₃g nhdsWithin_le_nhds + rw [this] at h₂f + apply AnalyticAt.smul + nth_rw 1 [← Int.toNat_of_nonneg (WithTop.coe_nonneg.mp h₂f)] + apply AnalyticAt.pow + apply AnalyticAt.sub + apply analyticAt_id -- Warning: want apply AnalyticAt.id + apply analyticAt_const -- Warning: want AnalyticAt.const + exact h₁g @@ -51,7 +71,20 @@ def MeromorphicAt.makeStronglyMeromorphicAt {z₀ : ℂ} (hf : MeromorphicAt f z₀) : ℂ → ℂ := by - exact 0 + by_cases h₂f : hf.order = ⊤ + · exact 0 + · have : ∃ n : ℤ, hf.order = n := by + exact Option.ne_none_iff_exists'.mp h₂f + + let o := hf.order.untop h₂f + have : hf.order = o := by + exact Eq.symm (WithTop.coe_untop hf.order h₂f) + rw [MeromorphicAt.order_eq_int_iff] at this + obtain ⟨g, hg⟩ := this + exact fun z ↦ (z - z₀) ^ o • g z + sorry + + theorem StronglyMeromorphicAt_of_makeStronglyMeromorphic